MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfval Structured version   Visualization version   GIF version

Theorem homfval 16558
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
homfval.x (𝜑𝑋𝐵)
homfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfval (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))

Proof of Theorem homfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homffval.f . . . 4 𝐹 = (Homf𝐶)
2 homffval.b . . . 4 𝐵 = (Base‘𝐶)
3 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 16556 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
54a1i 11 . 2 (𝜑𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
6 oveq12 6801 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
76adantl 467 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
8 homfval.x . 2 (𝜑𝑋𝐵)
9 homfval.y . 2 (𝜑𝑌𝐵)
10 ovexd 6824 . 2 (𝜑 → (𝑋𝐻𝑌) ∈ V)
115, 7, 8, 9, 10ovmpt2d 6934 1 (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  Vcvv 3349  cfv 6031  (class class class)co 6792  cmpt2 6794  Basecbs 16063  Hom chom 16159  Homf chomf 16533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-homf 16537
This theorem is referenced by:  homfeqval  16563  comfffval2  16567  comffval2  16568  comfval2  16569  catsubcat  16705  subcss2  16709  fullsubc  16716  fullresc  16717  funcres2c  16767  hof1  17101  hofcllem  17105  hofcl  17106  yonffthlem  17129  srhmsubc  42594  srhmsubcALTV  42612
  Copyright terms: Public domain W3C validator