![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfval | Structured version Visualization version GIF version |
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
homfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homfval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffval.f | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | homffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | homffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | homffval 16556 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
6 | oveq12 6801 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
7 | 6 | adantl 467 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
8 | homfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | homfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | ovexd 6824 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) ∈ V) | |
11 | 5, 7, 8, 9, 10 | ovmpt2d 6934 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 Basecbs 16063 Hom chom 16159 Homf chomf 16533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-homf 16537 |
This theorem is referenced by: homfeqval 16563 comfffval2 16567 comffval2 16568 comfval2 16569 catsubcat 16705 subcss2 16709 fullsubc 16716 fullresc 16717 funcres2c 16767 hof1 17101 hofcllem 17105 hofcl 17106 yonffthlem 17129 srhmsubc 42594 srhmsubcALTV 42612 |
Copyright terms: Public domain | W3C validator |