![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homffval | Structured version Visualization version GIF version |
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homffval | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffval.f | . 2 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | fveq2 6353 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | homffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | syl6eqr 2812 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6353 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | homffval.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | syl6eqr 2812 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 6831 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
9 | 4, 4, 8 | mpt2eq123dv 6883 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
10 | df-homf 16552 | . . . 4 ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | |
11 | fvex 6363 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
12 | 3, 11 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
13 | 12, 12 | mpt2ex 7416 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) ∈ V |
14 | 9, 10, 13 | fvmpt 6445 | . . 3 ⊢ (𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
15 | mpt20 6891 | . . . . 5 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝐻𝑦)) = ∅ | |
16 | 15 | eqcomi 2769 | . . . 4 ⊢ ∅ = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝐻𝑦)) |
17 | fvprc 6347 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
18 | fvprc 6347 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
19 | 3, 18 | syl5eq 2806 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
20 | mpt2eq12 6881 | . . . . 5 ⊢ ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝐻𝑦))) | |
21 | 19, 19, 20 | syl2anc 696 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝐻𝑦))) |
22 | 16, 17, 21 | 3eqtr4a 2820 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
23 | 14, 22 | pm2.61i 176 | . 2 ⊢ (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
24 | 1, 23 | eqtri 2782 | 1 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 Basecbs 16079 Hom chom 16174 Homf chomf 16548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-homf 16552 |
This theorem is referenced by: fnhomeqhomf 16572 homfval 16573 homffn 16574 homfeq 16575 oppchomf 16601 reschomf 16712 |
Copyright terms: Public domain | W3C validator |