MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqbas Structured version   Visualization version   GIF version

Theorem homfeqbas 16562
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
homfeqbas.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
homfeqbas (𝜑 → (Base‘𝐶) = (Base‘𝐷))

Proof of Theorem homfeqbas
StepHypRef Expression
1 homfeqbas.1 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
21dmeqd 5464 . . . 4 (𝜑 → dom (Homf𝐶) = dom (Homf𝐷))
3 eqid 2770 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 eqid 2770 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
53, 4homffn 16559 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
6 fndm 6130 . . . . 5 ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶)))
75, 6ax-mp 5 . . . 4 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
8 eqid 2770 . . . . . 6 (Homf𝐷) = (Homf𝐷)
9 eqid 2770 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
108, 9homffn 16559 . . . . 5 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
11 fndm 6130 . . . . 5 ((Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) → dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷)))
1210, 11ax-mp 5 . . . 4 dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷))
132, 7, 123eqtr3g 2827 . . 3 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
1413dmeqd 5464 . 2 (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷)))
15 dmxpid 5483 . 2 dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶)
16 dmxpid 5483 . 2 dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷)
1714, 15, 163eqtr3g 2827 1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630   × cxp 5247  dom cdm 5249   Fn wfn 6026  cfv 6031  Basecbs 16063  Homf chomf 16533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-homf 16537
This theorem is referenced by:  homfeqval  16563  comfeqd  16573  comfeqval  16574  catpropd  16575  cidpropd  16576  oppccomfpropd  16593  monpropd  16603  funcpropd  16766  fullpropd  16786  fthpropd  16787  natpropd  16842  fucpropd  16843  xpcpropd  17055  curfpropd  17080  hofpropd  17114
  Copyright terms: Public domain W3C validator