![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version |
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
2 | 1 | dmeqd 5464 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
3 | eqid 2770 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | eqid 2770 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 3, 4 | homffn 16559 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
6 | fndm 6130 | . . . . 5 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
8 | eqid 2770 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
9 | eqid 2770 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
10 | 8, 9 | homffn 16559 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
11 | fndm 6130 | . . . . 5 ⊢ ((Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) → dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷))) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
13 | 2, 7, 12 | 3eqtr3g 2827 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
14 | 13 | dmeqd 5464 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
15 | dmxpid 5483 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
16 | dmxpid 5483 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
17 | 14, 15, 16 | 3eqtr3g 2827 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 × cxp 5247 dom cdm 5249 Fn wfn 6026 ‘cfv 6031 Basecbs 16063 Homf chomf 16533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-homf 16537 |
This theorem is referenced by: homfeqval 16563 comfeqd 16573 comfeqval 16574 catpropd 16575 cidpropd 16576 oppccomfpropd 16593 monpropd 16603 funcpropd 16766 fullpropd 16786 fthpropd 16787 natpropd 16842 fucpropd 16843 xpcpropd 17055 curfpropd 17080 hofpropd 17114 |
Copyright terms: Public domain | W3C validator |