![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version |
Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | homarw 16903 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
5 | 3, 4 | sseldi 3750 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
6 | 1, 2 | homarw 16903 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
8 | 6, 7 | sseldi 3750 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
9 | 2 | homacd 16898 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
11 | 2 | homadm 16897 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
13 | 10, 12 | eqtr4d 2808 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
15 | 14, 1 | eldmcoa 16922 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
16 | 5, 8, 13, 15 | syl3anbrc 1428 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 dom cdm 5250 ‘cfv 6030 (class class class)co 6796 domacdoma 16877 codaccoda 16878 Arrowcarw 16879 Homachoma 16880 compaccoa 16911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-ot 4326 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-doma 16881 df-coda 16882 df-homa 16883 df-arw 16884 df-coa 16913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |