HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco2 Structured version   Visualization version   GIF version

Theorem homco2 29176
Description: Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 29000 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1227 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 simpl3 1231 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑈: ℋ⟶ ℋ)
3 simpr 471 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
4 homval 28940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
51, 2, 3, 4syl3anc 1476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
65fveq2d 6336 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝐴 ·op 𝑈)‘𝑥)) = (𝑇‘(𝐴 · (𝑈𝑥))))
7 homulcl 28958 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
873adant2 1125 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
9 fvco3 6417 . . . . 5 (((𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
108, 9sylan 569 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
11 fvco3 6417 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
122, 3, 11syl2anc 573 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
1312oveq2d 6809 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
14 lnopf 29058 . . . . . . . . 9 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
15143ad2ant2 1128 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑇: ℋ⟶ ℋ)
16 simp3 1132 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑈: ℋ⟶ ℋ)
17 fco 6198 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1815, 16, 17syl2anc 573 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1918adantr 466 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
20 homval 28940 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
211, 19, 3, 20syl3anc 1476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
22 simpl2 1229 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑇 ∈ LinOp)
2316ffvelrnda 6502 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
24 lnopmul 29166 . . . . . 6 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ (𝑈𝑥) ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2522, 1, 23, 24syl3anc 1476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2613, 21, 253eqtr4d 2815 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝑇‘(𝐴 · (𝑈𝑥))))
276, 10, 263eqtr4d 2815 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2827ralrimiva 3115 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
29 fco 6198 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3015, 8, 29syl2anc 573 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
31 simp1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝐴 ∈ ℂ)
32 homulcl 28958 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
3331, 18, 32syl2anc 573 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
34 hoeq 28959 . . 3 (((𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3530, 33, 34syl2anc 573 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3628, 35mpbid 222 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  ccom 5253  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  chil 28116   · csm 28118   ·op chot 28136  LinOpclo 28144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-hilex 28196  ax-hfvadd 28197  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvdistr2 28206  ax-hvmul0 28207
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471  df-hvsub 28168  df-homul 28930  df-lnop 29040
This theorem is referenced by:  opsqrlem1  29339
  Copyright terms: Public domain W3C validator