Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl Structured version   Visualization version   GIF version

Theorem homarcl 16884
 Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarcl (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)

Proof of Theorem homarcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4066 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
2 homarcl.h . . . . 5 𝐻 = (Homa𝐶)
3 df-homa 16882 . . . . . 6 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
43fvmptndm 6450 . . . . 5 𝐶 ∈ Cat → (Homa𝐶) = ∅)
52, 4syl5eq 2816 . . . 4 𝐶 ∈ Cat → 𝐻 = ∅)
65oveqd 6809 . . 3 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋𝑌))
7 0ov 6826 . . 3 (𝑋𝑌) = ∅
86, 7syl6eq 2820 . 2 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅)
91, 8nsyl2 144 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1630   ∈ wcel 2144  ∅c0 4061  {csn 4314   ↦ cmpt 4861   × cxp 5247  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  Hom chom 16159  Catccat 16531  Homachoma 16879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-dm 5259  df-iota 5994  df-fv 6039  df-ov 6795  df-homa 16882 This theorem is referenced by:  homarcl2  16891  homarel  16892  homa1  16893  homahom2  16894  coahom  16926  arwlid  16928  arwrid  16929  arwass  16930
 Copyright terms: Public domain W3C validator