Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissre Structured version   Visualization version   GIF version

Theorem hoissre 41079
Description: The projection of a half-open interval onto a single dimension is a subset of . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
hoissre.1 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoissre ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoissre
StepHypRef Expression
1 hoissre.1 . . . 4 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 480 . . 3 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 476 . . 3 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 39695 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelrnda 6399 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 7242 . . . 4 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . 3 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
8 xp2nd 7243 . . . . 5 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
95, 8syl 17 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
109rexrd 10127 . . 3 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
11 icossre 12292 . . 3 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
127, 10, 11syl2anc 694 . 2 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
134, 12eqsstrd 3672 1 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wss 3607   × cxp 5141  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  cr 9973  *cxr 10111  [,)cico 12215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ico 12219
This theorem is referenced by:  hoissrrn  41084
  Copyright terms: Public domain W3C validator