Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem3 Structured version   Visualization version   GIF version

Theorem hoiqssbllem3 41159
Description: A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem3.x (𝜑𝑋 ∈ Fin)
hoiqssbllem3.n (𝜑𝑋 ≠ ∅)
hoiqssbllem3.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbllem3.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbllem3 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbllem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem3.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
2 qex 11838 . . . . . . . . 9 ℚ ∈ V
32inex1 4832 . . . . . . . 8 (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∈ V
43a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∈ V)
5 hoiqssbllem3.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
6 elmapi 7921 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑𝑚 𝑋) → 𝑌:𝑋⟶ℝ)
75, 6syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
87ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
9 hoiqssbllem3.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
10 2rp 11875 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
12 hoiqssbllem3.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
13 hashnncl 13195 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
141, 13syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1512, 14mpbird 247 . . . . . . . . . . . . . . . 16 (𝜑 → (#‘𝑋) ∈ ℕ)
16 nnrp 11880 . . . . . . . . . . . . . . . 16 ((#‘𝑋) ∈ ℕ → (#‘𝑋) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (#‘𝑋) ∈ ℝ+)
1817rpsqrtcld 14194 . . . . . . . . . . . . . 14 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ+)
1911, 18rpmulcld 11926 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(#‘𝑋))) ∈ ℝ+)
209, 19rpdivcld 11927 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
228, 21ltsubrpd 11942 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝑌𝑖))
2321rpred 11910 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
248, 23resubcld 10496 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
2524, 8ltnled 10222 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝑌𝑖) ↔ ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
2622, 25mpbid 222 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))))
2724rexrd 10127 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
288rexrd 10127 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
2927, 28qinioo 40080 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = ∅ ↔ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
3026, 29mtbird 314 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = ∅)
3130neqned 2830 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ≠ ∅)
321, 4, 31choicefi 39706 . . . . . 6 (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
33 simpl 472 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → 𝑐 Fn 𝑋)
34 nfra1 2970 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
35 rspa 2959 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
36 elinel1 3832 . . . . . . . . . . . . . . . . 17 ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝑐𝑖) ∈ ℚ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ ℚ)
3837ex 449 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝑖𝑋 → (𝑐𝑖) ∈ ℚ))
3934, 38ralrimi 2986 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4133, 40jca 553 . . . . . . . . . . . 12 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
43 ffnfv 6428 . . . . . . . . . . 11 (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4442, 43sylibr 224 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐:𝑋⟶ℚ)
452a1i 11 . . . . . . . . . . . 12 (𝜑 → ℚ ∈ V)
46 elmapg 7912 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4745, 1, 46syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4944, 48mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐 ∈ (ℚ ↑𝑚 𝑋))
50 simprr 811 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
5149, 50jca 553 . . . . . . . 8 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
5251ex 449 . . . . . . 7 (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))))
5352eximdv 1886 . . . . . 6 (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))))
5432, 53mpd 15 . . . . 5 (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
55 df-rex 2947 . . . . 5 (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
5654, 55sylibr 224 . . . 4 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
572inex1 4832 . . . . . . . 8 (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∈ V)
598, 21ltaddrpd 11943 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
608, 23readdcld 10107 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
618, 60ltnled 10222 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ↔ ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖)))
6259, 61mpbid 222 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖))
6360rexrd 10127 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
6428, 63qinioo 40080 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = ∅ ↔ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖)))
6562, 64mtbird 314 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = ∅)
6665neqned 2830 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ≠ ∅)
671, 58, 66choicefi 39706 . . . . . 6 (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
68 simpl 472 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → 𝑑 Fn 𝑋)
69 nfra1 2970 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
70 rspa 2959 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
71 elinel1 3832 . . . . . . . . . . . . . . . . 17 ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑑𝑖) ∈ ℚ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℚ)
7372ex 449 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑖𝑋 → (𝑑𝑖) ∈ ℚ))
7469, 73ralrimi 2986 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7574adantl 481 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7668, 75jca 553 . . . . . . . . . . . 12 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7776adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
78 ffnfv 6428 . . . . . . . . . . 11 (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7977, 78sylibr 224 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℚ)
80 elmapg 7912 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8145, 1, 80syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8281adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8379, 82mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑𝑚 𝑋))
84 simprr 811 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
8583, 84jca 553 . . . . . . . 8 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
8685ex 449 . . . . . . 7 (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))))
8786eximdv 1886 . . . . . 6 (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))))
8867, 87mpd 15 . . . . 5 (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
89 df-rex 2947 . . . . 5 (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
9088, 89sylibr 224 . . . 4 (𝜑 → ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
9156, 90jca 553 . . 3 (𝜑 → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
92 reeanv 3136 . . 3 (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
9391, 92sylibr 224 . 2 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
94 nfv 1883 . . . . . . . 8 𝑖((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋))
9534, 69nfan 1868 . . . . . . . 8 𝑖(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
9694, 95nfan 1868 . . . . . . 7 𝑖(((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
971ad3antrrr 766 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ∈ Fin)
9812ad3antrrr 766 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ≠ ∅)
995ad3antrrr 766 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
100 elmapi 7921 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℚ)
101 qssre 11836 . . . . . . . . . . 11 ℚ ⊆ ℝ
102101a1i 11 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → ℚ ⊆ ℝ)
103100, 102fssd 6095 . . . . . . . . 9 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℝ)
104103adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) → 𝑐:𝑋⟶ℝ)
105104ad2antrr 762 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
106 elmapi 7921 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℚ)
107101a1i 11 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → ℚ ⊆ ℝ)
108106, 107fssd 6095 . . . . . . . 8 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℝ)
109108ad2antlr 763 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1109ad3antrrr 766 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝐸 ∈ ℝ+)
11135elin2d 3836 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
112111adantlr 751 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
113112adantll 750 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
11470elin2d 3836 . . . . . . . . 9 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
115114adantll 750 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
116115adantll 750 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
11796, 97, 98, 99, 105, 109, 110, 113, 116hoiqssbllem1 41157 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
118 simpl 472 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)))
119 fveq2 6229 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑐𝑖) = (𝑐𝑘))
120 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑌𝑖) = (𝑌𝑘))
121120oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) = ((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋))))))
122121, 120oveq12d 6708 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)) = (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘)))
123122ineq2d 3847 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
124119, 123eleq12d 2724 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘)))))
125124cbvralv 3201 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
126125biimpi 206 . . . . . . . . . 10 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
127126adantr 480 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
128 fveq2 6229 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
129120oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) = ((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))
130120, 129oveq12d 6708 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))) = ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
131130ineq2d 3847 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
132128, 131eleq12d 2724 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
133132cbvralv 3201 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
134133biimpi 206 . . . . . . . . . 10 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
135134adantl 481 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
136127, 135jca 553 . . . . . . . 8 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
137136adantl 481 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
138 nfv 1883 . . . . . . . 8 𝑖(((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
1391ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ∈ Fin)
14012ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ≠ ∅)
1415ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
142104ad2antrr 762 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
143108ad2antlr 763 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1449ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝐸 ∈ ℝ+)
145125, 111sylanbr 489 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
146145adantlr 751 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
147146adantll 750 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
148133, 114sylanbr 489 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
149148adantll 750 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
150149adantll 750 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
151138, 139, 140, 141, 142, 143, 144, 147, 150hoiqssbllem2 41158 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
152118, 137, 151syl2anc 694 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
153117, 152jca 553 . . . . 5 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
154153ex 449 . . . 4 (((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
155154reximdva 3046 . . 3 ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
156155reximdva 3046 . 2 (𝜑 → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
15793, 156mpd 15 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  c0 3948   class class class wbr 4685   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  cr 9973   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  cq 11826  +crp 11870  (,)cioo 12213  [,)cico 12215  #chash 13157  csqrt 14017  distcds 15997  ballcbl 19781  ℝ^crrx 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-staf 18893  df-srng 18894  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-cnfld 19795  df-refld 19999  df-dsmm 20124  df-frlm 20139  df-nm 22434  df-tng 22436  df-tch 23015  df-rrx 23219
This theorem is referenced by:  hoiqssbl  41160
  Copyright terms: Public domain W3C validator