Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem2 Structured version   Visualization version   GIF version

Theorem hoiqssbllem2 41158
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem2.i 𝑖𝜑
hoiqssbllem2.x (𝜑𝑋 ∈ Fin)
hoiqssbllem2.n (𝜑𝑋 ≠ ∅)
hoiqssbllem2.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbllem2.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem2.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem2.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem2.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem2.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem2 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Distinct variable groups:   𝐶,𝑖   𝐷,𝑖   𝑖,𝐸   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem hoiqssbllem2
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem2.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2 eqid 2651 . . . . . . . . . 10 (ℝ^‘𝑋) = (ℝ^‘𝑋)
3 eqid 2651 . . . . . . . . . 10 (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 𝑋)
42, 3rrxdsfi 40823 . . . . . . . . 9 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
51, 4syl 17 . . . . . . . 8 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
65adantr 480 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
7 fveq1 6228 . . . . . . . . . . . . 13 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
87adantr 480 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑔𝑖) = (𝑌𝑖))
9 fveq1 6228 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑖) = (𝑓𝑖))
109adantl 481 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑖) = (𝑓𝑖))
118, 10oveq12d 6708 . . . . . . . . . . 11 ((𝑔 = 𝑌 = 𝑓) → ((𝑔𝑖) − (𝑖)) = ((𝑌𝑖) − (𝑓𝑖)))
1211oveq1d 6705 . . . . . . . . . 10 ((𝑔 = 𝑌 = 𝑓) → (((𝑔𝑖) − (𝑖))↑2) = (((𝑌𝑖) − (𝑓𝑖))↑2))
1312sumeq2ad 14478 . . . . . . . . 9 ((𝑔 = 𝑌 = 𝑓) → Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2) = Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
1413fveq2d 6233 . . . . . . . 8 ((𝑔 = 𝑌 = 𝑓) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
1514adantl 481 . . . . . . 7 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ (𝑔 = 𝑌 = 𝑓)) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
16 hoiqssbllem2.y . . . . . . . 8 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
1716adantr 480 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
18 hoiqssbllem2.i . . . . . . . . . 10 𝑖𝜑
19 hoiqssbllem2.c . . . . . . . . . . 11 (𝜑𝐶:𝑋⟶ℝ)
2019ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
21 hoiqssbllem2.d . . . . . . . . . . . 12 (𝜑𝐷:𝑋⟶ℝ)
2221ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
2322rexrd 10127 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
2418, 20, 23hoissrrn2 41113 . . . . . . . . 9 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
2524adantr 480 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
26 simpr 476 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
2725, 26sseldd 3637 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑𝑚 𝑋))
28 fvexd 6241 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ V)
296, 15, 17, 27, 28ovmpt2d 6830 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
30 nfcv 2793 . . . . . . . . . 10 𝑖𝑓
31 nfixp1 7970 . . . . . . . . . 10 𝑖X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3230, 31nfel 2806 . . . . . . . . 9 𝑖 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3318, 32nfan 1868 . . . . . . . 8 𝑖(𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
34 simpl 472 . . . . . . . . 9 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝜑)
3534, 1syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑋 ∈ Fin)
36 elmapi 7921 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑𝑚 𝑋) → 𝑌:𝑋⟶ℝ)
3716, 36syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
3837ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
3934, 38sylan 487 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
40 icossre 12292 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ*) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4120, 23, 40syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4241adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
43 fvixp2 39703 . . . . . . . . . . . 12 ((𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443adantll 750 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4542, 44sseldd 3637 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
4639, 45resubcld 10496 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝑌𝑖) − (𝑓𝑖)) ∈ ℝ)
47 2nn0 11347 . . . . . . . . . 10 2 ∈ ℕ0
4847a1i 11 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 2 ∈ ℕ0)
4946, 48reexpcld 13065 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
5033, 35, 49fsumreclf 40126 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
51 fveq2 6229 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
52 fveq2 6229 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
5351, 52oveq12d 6708 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
5453cbvixpv 7968 . . . . . . . . . . 11 X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) = X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))
5554eleq2i 2722 . . . . . . . . . 10 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5655biimpi 206 . . . . . . . . 9 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5756adantl 481 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
581adantr 480 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ∈ Fin)
59 simpll 805 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝜑)
6055biimpri 218 . . . . . . . . . . 11 (𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
6160ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
62 simpr 476 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑖𝑋)
6359, 61, 62, 49syl21anc 1365 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
6446sqge0d 13076 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6559, 61, 62, 64syl21anc 1365 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6658, 63, 65fsumge0 14571 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6734, 57, 66syl2anc 694 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6850, 67resqrtcld 14200 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ ℝ)
6929, 68eqeltrd 2730 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) ∈ ℝ)
7022, 20resubcld 10496 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
7170resqcld 13075 . . . . . . . 8 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
721, 71fsumrecl 14509 . . . . . . 7 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
7370sqge0d 13076 . . . . . . . 8 ((𝜑𝑖𝑋) → 0 ≤ (((𝐷𝑖) − (𝐶𝑖))↑2))
741, 71, 73fsumge0 14571 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
7572, 74resqrtcld 14200 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
7675adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
77 hoiqssbllem2.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
7877rpred 11910 . . . . . 6 (𝜑𝐸 ∈ ℝ)
7978adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ)
80 hoiqssbllem2.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ≠ ∅)
8271adantlr 751 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
8334, 22sylan 487 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
8434, 20sylan 487 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
8583, 84resubcld 10496 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
8620rexrd 10127 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
8738rexrd 10127 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
88 2rp 11875 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℝ+)
90 hashnncl 13195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
911, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
9280, 91mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (#‘𝑋) ∈ ℕ)
9392nnred 11073 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (#‘𝑋) ∈ ℝ)
9492nngt0d 11102 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 < (#‘𝑋))
9593, 94elrpd 11907 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (#‘𝑋) ∈ ℝ+)
9695rpsqrtcld 14194 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ+)
9789, 96rpmulcld 11926 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · (√‘(#‘𝑋))) ∈ ℝ+)
9877, 97rpdivcld 11927 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
9998rpred 11910 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
10138, 100resubcld 10496 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
102101rexrd 10127 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
103 hoiqssbllem2.l . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
104 iooltub 40053 . . . . . . . . . . . . . . . . 17 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
105102, 87, 103, 104syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
10620, 38, 105ltled 10223 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
10738, 100readdcld 10107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
108107rexrd 10127 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
109 hoiqssbllem2.r . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
110 ioogtlb 40035 . . . . . . . . . . . . . . . 16 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
11187, 108, 109, 110syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
11286, 23, 87, 106, 111elicod 12262 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
11334, 112sylan 487 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
114 icodiamlt 14218 . . . . . . . . . . . . 13 ((((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ) ∧ ((𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)) ∧ (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
11584, 83, 113, 44, 114syl22anc 1367 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
116 0red 10079 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 ∈ ℝ)
11720, 38, 22, 106, 111lelttrd 10233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝐷𝑖))
11820, 22posdifd 10652 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝐶𝑖) < (𝐷𝑖) ↔ 0 < ((𝐷𝑖) − (𝐶𝑖))))
119117, 118mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 < ((𝐷𝑖) − (𝐶𝑖)))
120116, 70, 119ltled 10223 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 0 ≤ ((𝐷𝑖) − (𝐶𝑖)))
12170, 120absidd 14205 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (abs‘((𝐷𝑖) − (𝐶𝑖))) = ((𝐷𝑖) − (𝐶𝑖)))
122121eqcomd 2657 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
123122adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
124115, 123breqtrd 4711 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < (abs‘((𝐷𝑖) − (𝐶𝑖))))
12546, 85, 124abslt2sqd 39889 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12659, 61, 62, 125syl21anc 1365 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12758, 81, 63, 82, 126fsumlt 14576 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12834, 57, 127syl2anc 694 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12934, 72syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
13034, 74syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
13150, 67, 129, 130sqrtltd 14210 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ↔ (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))))
132128, 131mpbid 222 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13329, 132eqbrtrd 4707 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13478, 96rerpdivcld 11941 . . . . . . . . . . 11 (𝜑 → (𝐸 / (√‘(#‘𝑋))) ∈ ℝ)
135134resqcld 13075 . . . . . . . . . 10 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
136135adantr 480 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
13722, 20jca 553 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
138107, 101jca 553 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ))
139137, 138jca 553 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)))
140 iooltub 40053 . . . . . . . . . . . . . 14 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
14187, 108, 109, 140syl3anc 1366 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
142 ioogtlb 40035 . . . . . . . . . . . . . 14 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖))
143102, 87, 103, 142syl3anc 1366 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖))
144141, 143jca 553 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖)))
145 lt2sub 10564 . . . . . . . . . . . 12 ((((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)) → (((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖)) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))))))
146139, 144, 145sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
14738recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℂ)
148100recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℂ)
149147, 148, 148pnncand 10469 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))) = ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))))
15078recnd 10106 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
15196rpcnd 11912 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(#‘𝑋)) ∈ ℂ)
152 2cnd 11131 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
15396rpne0d 11915 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(#‘𝑋)) ≠ 0)
15489rpne0d 11915 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
155150, 151, 152, 153, 154divdiv3d 39888 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 / (√‘(#‘𝑋))) / 2) = (𝐸 / (2 · (√‘(#‘𝑋)))))
156155eqcomd 2657 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) = ((𝐸 / (√‘(#‘𝑋))) / 2))
157156, 156oveq12d 6708 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (((𝐸 / (√‘(#‘𝑋))) / 2) + ((𝐸 / (√‘(#‘𝑋))) / 2)))
158150, 151, 153divcld 10839 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (√‘(#‘𝑋))) ∈ ℂ)
1591582halvesd 11316 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸 / (√‘(#‘𝑋))) / 2) + ((𝐸 / (√‘(#‘𝑋))) / 2)) = (𝐸 / (√‘(#‘𝑋))))
160157, 159eqtrd 2685 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (𝐸 / (√‘(#‘𝑋))))
161160adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (𝐸 / (√‘(#‘𝑋))))
162149, 161eqtrd 2685 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))) = (𝐸 / (√‘(#‘𝑋))))
163146, 162breqtrd 4711 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))))
164134adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (√‘(#‘𝑋))) ∈ ℝ)
165 0red 10079 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
16696rpred 11910 . . . . . . . . . . . . . 14 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ)
16777rpgt0d 11913 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
16896rpgt0d 11913 . . . . . . . . . . . . . 14 (𝜑 → 0 < (√‘(#‘𝑋)))
16978, 166, 167, 168divgt0d 10997 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐸 / (√‘(#‘𝑋))))
170165, 134, 169ltled 10223 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸 / (√‘(#‘𝑋))))
171170adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 0 ≤ (𝐸 / (√‘(#‘𝑋))))
172 lt2sq 12977 . . . . . . . . . . 11 (((((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ ∧ 0 ≤ ((𝐷𝑖) − (𝐶𝑖))) ∧ ((𝐸 / (√‘(#‘𝑋))) ∈ ℝ ∧ 0 ≤ (𝐸 / (√‘(#‘𝑋))))) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2)))
17370, 120, 164, 171, 172syl22anc 1367 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2)))
174163, 173mpbid 222 . . . . . . . . 9 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2))
1751, 80, 71, 136, 174fsumlt 14576 . . . . . . . 8 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))
1761, 136fsumrecl 14509 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
177164sqge0d 13076 . . . . . . . . . 10 ((𝜑𝑖𝑋) → 0 ≤ ((𝐸 / (√‘(#‘𝑋)))↑2))
1781, 136, 177fsumge0 14571 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))
17972, 74, 176, 178sqrtltd 14210 . . . . . . . 8 (𝜑 → (Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) ↔ (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))))
180175, 179mpbid 222 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)))
181135recnd 10106 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℂ)
182 fsumconst 14566 . . . . . . . . . . 11 ((𝑋 ∈ Fin ∧ ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℂ) → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)))
1831, 181, 182syl2anc 694 . . . . . . . . . 10 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)))
184 sqdiv 12968 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (√‘(#‘𝑋)) ∈ ℂ ∧ (√‘(#‘𝑋)) ≠ 0) → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(#‘𝑋))↑2)))
185150, 151, 153, 184syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(#‘𝑋))↑2)))
18693recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → (#‘𝑋) ∈ ℂ)
187 sqrtth 14148 . . . . . . . . . . . . . 14 ((#‘𝑋) ∈ ℂ → ((√‘(#‘𝑋))↑2) = (#‘𝑋))
188186, 187syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘(#‘𝑋))↑2) = (#‘𝑋))
189188oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) / ((√‘(#‘𝑋))↑2)) = ((𝐸↑2) / (#‘𝑋)))
190185, 189eqtrd 2685 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / (#‘𝑋)))
191190oveq2d 6706 . . . . . . . . . 10 (𝜑 → ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)) = ((#‘𝑋) · ((𝐸↑2) / (#‘𝑋))))
192150sqcld 13046 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
193165, 94gtned 10210 . . . . . . . . . . 11 (𝜑 → (#‘𝑋) ≠ 0)
194192, 186, 193divcan2d 10841 . . . . . . . . . 10 (𝜑 → ((#‘𝑋) · ((𝐸↑2) / (#‘𝑋))) = (𝐸↑2))
195183, 191, 1943eqtrd 2689 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = (𝐸↑2))
196195fveq2d 6233 . . . . . . . 8 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)) = (√‘(𝐸↑2)))
197165, 78, 167ltled 10223 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
198 sqrtsq 14054 . . . . . . . . 9 ((𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) → (√‘(𝐸↑2)) = 𝐸)
19978, 197, 198syl2anc 694 . . . . . . . 8 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
200 eqidd 2652 . . . . . . . 8 (𝜑𝐸 = 𝐸)
201196, 199, 2003eqtrd 2689 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)) = 𝐸)
202180, 201breqtrd 4711 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
203202adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
20469, 76, 79, 133, 203lttrd 10236 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸)
205 eqid 2651 . . . . . . . 8 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
206205rrxmetfi 40825 . . . . . . 7 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
207 metxmet 22186 . . . . . . 7 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
2081, 206, 2073syl 18 . . . . . 6 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
209208adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
21079rexrd 10127 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ*)
21127, 3syl6eleq 2740 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑𝑚 𝑋))
212 elbl2 22242 . . . . 5 ((((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐸 ∈ ℝ*) ∧ (𝑌 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
213209, 210, 17, 211, 212syl22anc 1367 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
214204, 213mpbird 247 . . 3 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
215214ralrimiva 2995 . 2 (𝜑 → ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
216 dfss3 3625 . 2 (X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
217215, 216sylibr 224 1 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wnf 1748  wcel 2030  wne 2823  wral 2941  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  cc 9972  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  +crp 11870  (,)cioo 12213  [,)cico 12215  cexp 12900  #chash 13157  csqrt 14017  abscabs 14018  Σcsu 14460  distcds 15997  ∞Metcxmt 19779  Metcme 19780  ballcbl 19781  ℝ^crrx 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-staf 18893  df-srng 18894  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-cnfld 19795  df-refld 19999  df-dsmm 20124  df-frlm 20139  df-nm 22434  df-tng 22436  df-tch 23015  df-rrx 23219
This theorem is referenced by:  hoiqssbllem3  41159
  Copyright terms: Public domain W3C validator