![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl | Structured version Visualization version GIF version |
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoimbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoimbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
hoimbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoimbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoimbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoimbl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 ∈ Fin) |
3 | 2 | rrnmbl 41326 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋)) |
4 | reex 10211 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
5 | mapdm0 8030 | . . . . . . . . 9 ⊢ (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅}) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ ↑𝑚 ∅) = {∅} |
7 | 6 | eqcomi 2761 | . . . . . . 7 ⊢ {∅} = (ℝ ↑𝑚 ∅) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → {∅} = (ℝ ↑𝑚 ∅)) |
9 | id 22 | . . . . . . . 8 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
10 | 9 | ixpeq1d 8078 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖))) |
11 | ixp0x 8094 | . . . . . . . 8 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅} | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
13 | 10, 12 | eqtrd 2786 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
14 | oveq2 6813 | . . . . . 6 ⊢ (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅)) | |
15 | 8, 13, 14 | 3eqtr4d 2796 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑𝑚 𝑋)) |
16 | 15 | adantl 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑𝑚 𝑋)) |
17 | hoimbl.s | . . . . 5 ⊢ 𝑆 = dom (voln‘𝑋) | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑆 = dom (voln‘𝑋)) |
19 | 16, 18 | eleq12d 2825 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆 ↔ (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋))) |
20 | 3, 19 | mpbird 247 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
21 | 1 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
22 | 9 | necon3bi 2950 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) |
23 | 22 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
24 | hoimbl.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
25 | 24 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
26 | hoimbl.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
27 | 26 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
28 | id 22 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) | |
29 | eqidd 2753 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ℝ = ℝ) | |
30 | 28 | ixpeq1d 8078 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) |
31 | eqeq1 2756 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑗 = ℎ ↔ 𝑖 = ℎ)) | |
32 | 31 | ifbid 4244 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
33 | 32 | cbvixpv 8084 | . . . . . . . 8 ⊢ X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) |
34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
35 | 30, 34 | eqtrd 2786 | . . . . . 6 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
36 | 28, 29, 35 | mpt2eq123dv 6874 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ))) |
37 | eqeq2 2763 | . . . . . . . . 9 ⊢ (ℎ = 𝑙 → (𝑖 = ℎ ↔ 𝑖 = 𝑙)) | |
38 | 37 | ifbid 4244 | . . . . . . . 8 ⊢ (ℎ = 𝑙 → if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
39 | 38 | ixpeq2dv 8082 | . . . . . . 7 ⊢ (ℎ = 𝑙 → X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
40 | oveq2 6813 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦)) | |
41 | 40 | ifeq1d 4240 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
42 | 41 | ixpeq2dv 8082 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
43 | 39, 42 | cbvmpt2v 6892 | . . . . . 6 ⊢ (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
44 | 43 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
45 | 36, 44 | eqtrd 2786 | . . . 4 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
46 | 45 | cbvmptv 4894 | . . 3 ⊢ (𝑤 ∈ Fin ↦ (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
47 | 21, 23, 17, 25, 27, 46 | hoimbllem 41342 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
48 | 20, 47 | pm2.61dan 867 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 Vcvv 3332 ∅c0 4050 ifcif 4222 {csn 4313 ↦ cmpt 4873 dom cdm 5258 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ↦ cmpt2 6807 ↑𝑚 cmap 8015 Xcixp 8066 Fincfn 8113 ℝcr 10119 -∞cmnf 10256 (,)cioo 12360 [,)cico 12362 volncvoln 41250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cc 9441 ax-ac2 9469 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-disj 4765 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-omul 7726 df-er 7903 df-map 8017 df-pm 8018 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fi 8474 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-acn 8950 df-ac 9121 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-ioo 12364 df-ico 12366 df-icc 12367 df-fz 12512 df-fzo 12652 df-fl 12779 df-seq 12988 df-exp 13047 df-hash 13304 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-clim 14410 df-rlim 14411 df-sum 14608 df-prod 14827 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-rest 16277 df-0g 16296 df-topgen 16298 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-subg 17784 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-cring 18742 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-dvr 18875 df-drng 18943 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-cnfld 19941 df-top 20893 df-topon 20910 df-bases 20944 df-cmp 21384 df-ovol 23425 df-vol 23426 df-salg 41024 df-sumge0 41075 df-mea 41162 df-ome 41202 df-caragen 41204 df-ovoln 41249 df-voln 41251 |
This theorem is referenced by: opnvonmbllem2 41345 hoimbl2 41377 vonhoi 41379 vonioolem1 41392 vonioolem2 41393 vonicclem1 41395 vonicclem2 41396 |
Copyright terms: Public domain | W3C validator |