![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval0b | Structured version Visualization version GIF version |
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvval0b.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvval0b.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoidmvval0b.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidmvval0b | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . . . 5 ⊢ (𝑋 = ∅ → (𝐿‘𝑋) = (𝐿‘∅)) | |
2 | 1 | oveqd 6830 | . . . 4 ⊢ (𝑋 = ∅ → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
3 | 2 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
4 | hoidmvval0b.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
5 | hoidmvval0b.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
6 | 5 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
7 | feq2 6188 | . . . . . 6 ⊢ (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) | |
8 | 7 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
9 | 6, 8 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:∅⟶ℝ) |
10 | 4, 9, 9 | hoidmv0val 41303 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘∅)𝐴) = 0) |
11 | 3, 10 | eqtrd 2794 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
12 | nfv 1992 | . . 3 ⊢ Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) | |
13 | hoidmvval0b.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
14 | 13 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
15 | 5 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
16 | neqne 2940 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
17 | n0 4074 | . . . . . . 7 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝑋) | |
18 | 16, 17 | sylib 208 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → ∃𝑗 𝑗 ∈ 𝑋) |
19 | 18 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 𝑗 ∈ 𝑋) |
20 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
21 | 5 | ffvelrnda 6522 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
22 | eqidd 2761 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) = (𝐴‘𝑗)) | |
23 | 21, 22 | eqled 10332 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
24 | 20, 23 | jca 555 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
25 | 24 | ex 449 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
26 | 25 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
27 | 26 | eximdv 1995 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∃𝑗 𝑗 ∈ 𝑋 → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
28 | 19, 27 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
29 | df-rex 3056 | . . . 4 ⊢ (∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗) ↔ ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) | |
30 | 28, 29 | sylibr 224 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
31 | 12, 4, 14, 15, 15, 30 | hoidmvval0 41307 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
32 | 11, 31 | pm2.61dan 867 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∅c0 4058 ifcif 4230 class class class wbr 4804 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 ↑𝑚 cmap 8023 Fincfn 8121 ℝcr 10127 0cc0 10128 ≤ cle 10267 [,)cico 12370 ∏cprod 14834 volcvol 23432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-sum 14616 df-prod 14835 df-rest 16285 df-topgen 16306 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-top 20901 df-topon 20918 df-bases 20952 df-cmp 21392 df-ovol 23433 df-vol 23434 |
This theorem is referenced by: hoidmvlelem2 41316 |
Copyright terms: Public domain | W3C validator |