Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvlelem5 Structured version   Visualization version   GIF version

Theorem hoidmvlelem5 41333
Description: The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvlelem5.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvlelem5.f (𝜑𝑋 ∈ Fin)
hoidmvlelem5.y (𝜑𝑌𝑋)
hoidmvlelem5.z (𝜑𝑍 ∈ (𝑋𝑌))
hoidmvlelem5.w 𝑊 = (𝑌 ∪ {𝑍})
hoidmvlelem5.a (𝜑𝐴:𝑊⟶ℝ)
hoidmvlelem5.b (𝜑𝐵:𝑊⟶ℝ)
hoidmvlelem5.c (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))
hoidmvlelem5.d (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))
hoidmvlelem5.i (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
hoidmvlelem5.s (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
hoidmvlelem5.n (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
hoidmvlelem5 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
Distinct variable groups:   𝐴,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐴,𝑒,𝑓,𝑔,,𝑗,𝑘   𝐵,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐵,𝑓,𝑔   𝐶,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐶,𝑔   𝐷,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐷,𝑔   𝐿,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑒,𝐿,𝑓,𝑔   𝑊,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑔,𝑊   𝑌,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑒,𝑌,𝑓,𝑔   𝑍,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑔,𝑍   𝜑,𝑎,𝑏,,𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑔)   𝐵(𝑒)   𝐶(𝑒,𝑓)   𝐷(𝑒,𝑓)   𝑊(𝑒,𝑓)   𝑋(𝑥,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑎,𝑏)   𝑍(𝑒,𝑓)

Proof of Theorem hoidmvlelem5
Dummy variables 𝑟 𝑠 𝑐 𝑤 𝑧 𝑖 𝑙 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1995 . . . . 5 𝑠𝜑
2 nfre1 3153 . . . . 5 𝑠𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)
31, 2nfan 1980 . . . 4 𝑠(𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠))
4 hoidmvlelem5.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
5 hoidmvlelem5.w . . . . . 6 𝑊 = (𝑌 ∪ {𝑍})
6 hoidmvlelem5.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
7 hoidmvlelem5.y . . . . . . . 8 (𝜑𝑌𝑋)
8 ssfi 8336 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑌𝑋) → 𝑌 ∈ Fin)
96, 7, 8syl2anc 573 . . . . . . 7 (𝜑𝑌 ∈ Fin)
10 snfi 8194 . . . . . . . 8 {𝑍} ∈ Fin
1110a1i 11 . . . . . . 7 (𝜑 → {𝑍} ∈ Fin)
12 unfi 8383 . . . . . . 7 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
139, 11, 12syl2anc 573 . . . . . 6 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
145, 13syl5eqel 2854 . . . . 5 (𝜑𝑊 ∈ Fin)
1514adantr 466 . . . 4 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → 𝑊 ∈ Fin)
16 hoidmvlelem5.a . . . . 5 (𝜑𝐴:𝑊⟶ℝ)
1716adantr 466 . . . 4 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → 𝐴:𝑊⟶ℝ)
18 hoidmvlelem5.b . . . . 5 (𝜑𝐵:𝑊⟶ℝ)
1918adantr 466 . . . 4 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → 𝐵:𝑊⟶ℝ)
20 simpr 471 . . . 4 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠))
213, 4, 15, 17, 19, 20hoidmvval0 41321 . . 3 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → (𝐴(𝐿𝑊)𝐵) = 0)
22 nnex 11228 . . . . . 6 ℕ ∈ V
2322a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
24 icossicc 12466 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
2514adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
26 hoidmvlelem5.c . . . . . . . . . 10 (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))
2726ffvelrnda 6502 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑𝑚 𝑊))
28 elmapi 8031 . . . . . . . . 9 ((𝐶𝑗) ∈ (ℝ ↑𝑚 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
2927, 28syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
30 hoidmvlelem5.d . . . . . . . . . 10 (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))
3130ffvelrnda 6502 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑𝑚 𝑊))
32 elmapi 8031 . . . . . . . . 9 ((𝐷𝑗) ∈ (ℝ ↑𝑚 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
3331, 32syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
344, 25, 29, 33hoidmvcl 41316 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
3524, 34sseldi 3750 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
36 eqid 2771 . . . . . 6 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
3735, 36fmptd 6527 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))):ℕ⟶(0[,]+∞))
3823, 37sge0ge0 41118 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
3938adantr 466 . . 3 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
4021, 39eqbrtrd 4808 . 2 ((𝜑 ∧ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
41 icossxr 12463 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
424, 14, 16, 18hoidmvcl 41316 . . . . . . 7 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ (0[,)+∞))
4341, 42sseldi 3750 . . . . . 6 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ ℝ*)
4443adantr 466 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) ∈ ℝ*)
4523, 37sge0xrcl 41119 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
4645adantr 466 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
47 rge0ssre 12487 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
4847, 42sseldi 3750 . . . . . . . 8 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ ℝ)
49 ltpnf 12159 . . . . . . . 8 ((𝐴(𝐿𝑊)𝐵) ∈ ℝ → (𝐴(𝐿𝑊)𝐵) < +∞)
5048, 49syl 17 . . . . . . 7 (𝜑 → (𝐴(𝐿𝑊)𝐵) < +∞)
5150adantr 466 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) < +∞)
52 id 22 . . . . . . . 8 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞ → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞)
5352eqcomd 2777 . . . . . . 7 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞ → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5453adantl 467 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5551, 54breqtrd 4812 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) < (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5644, 46, 55xrltled 40004 . . . 4 ((𝜑 ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5756adantlr 694 . . 3 (((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
58 simpll 750 . . . 4 (((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → 𝜑)
59 simpr 471 . . . . . 6 ((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠))
6016ffvelrnda 6502 . . . . . . . . . 10 ((𝜑𝑠𝑊) → (𝐴𝑠) ∈ ℝ)
6118ffvelrnda 6502 . . . . . . . . . 10 ((𝜑𝑠𝑊) → (𝐵𝑠) ∈ ℝ)
6260, 61ltnled 10386 . . . . . . . . 9 ((𝜑𝑠𝑊) → ((𝐴𝑠) < (𝐵𝑠) ↔ ¬ (𝐵𝑠) ≤ (𝐴𝑠)))
6362ralbidva 3134 . . . . . . . 8 (𝜑 → (∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ↔ ∀𝑠𝑊 ¬ (𝐵𝑠) ≤ (𝐴𝑠)))
64 ralnex 3141 . . . . . . . . 9 (∀𝑠𝑊 ¬ (𝐵𝑠) ≤ (𝐴𝑠) ↔ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠))
6564a1i 11 . . . . . . . 8 (𝜑 → (∀𝑠𝑊 ¬ (𝐵𝑠) ≤ (𝐴𝑠) ↔ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)))
6663, 65bitrd 268 . . . . . . 7 (𝜑 → (∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ↔ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)))
6766adantr 466 . . . . . 6 ((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → (∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ↔ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)))
6859, 67mpbird 247 . . . . 5 ((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠))
6968adantr 466 . . . 4 (((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠))
70 simpr 471 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞)
7122a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → ℕ ∈ V)
7237adantr 466 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))):ℕ⟶(0[,]+∞))
7371, 72sge0repnf 41120 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞))
7470, 73mpbird 247 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
7574adantlr 694 . . . 4 (((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
76 simpll 750 . . . . . . 7 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)))
77 fveq2 6332 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐶𝑗) = (𝐶𝑖))
78 fveq2 6332 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐷𝑗) = (𝐷𝑖))
7977, 78oveq12d 6811 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) = ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))
8079cbvmptv 4884 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))) = (𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))
8180fveq2i 6335 . . . . . . . . . 10 ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖))))
8281eleq1i 2841 . . . . . . . . 9 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ ↔ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ)
8382biimpi 206 . . . . . . . 8 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ → (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ)
8483ad2antlr 706 . . . . . . 7 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ)
85 simpr 471 . . . . . . 7 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
866ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑋 ∈ Fin)
877ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌𝑋)
88 hoidmvlelem5.n . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
8988ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌 ≠ ∅)
90 hoidmvlelem5.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑋𝑌))
9190ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑍 ∈ (𝑋𝑌))
9216ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐴:𝑊⟶ℝ)
9318ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐵:𝑊⟶ℝ)
94 fveq2 6332 . . . . . . . . . . . . . 14 (𝑠 = 𝑘 → (𝐴𝑠) = (𝐴𝑘))
95 fveq2 6332 . . . . . . . . . . . . . 14 (𝑠 = 𝑘 → (𝐵𝑠) = (𝐵𝑘))
9694, 95breq12d 4799 . . . . . . . . . . . . 13 (𝑠 = 𝑘 → ((𝐴𝑠) < (𝐵𝑠) ↔ (𝐴𝑘) < (𝐵𝑘)))
9796cbvralv 3320 . . . . . . . . . . . 12 (∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ↔ ∀𝑘𝑊 (𝐴𝑘) < (𝐵𝑘))
9897biimpi 206 . . . . . . . . . . 11 (∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) → ∀𝑘𝑊 (𝐴𝑘) < (𝐵𝑘))
9998adantr 466 . . . . . . . . . 10 ((∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ∧ 𝑘𝑊) → ∀𝑘𝑊 (𝐴𝑘) < (𝐵𝑘))
100 simpr 471 . . . . . . . . . 10 ((∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ∧ 𝑘𝑊) → 𝑘𝑊)
101 rspa 3079 . . . . . . . . . 10 ((∀𝑘𝑊 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
10299, 100, 101syl2anc 573 . . . . . . . . 9 ((∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠) ∧ 𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
103102ad5ant25 1225 . . . . . . . 8 (((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
10426ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))
10530ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))
10682biimpri 218 . . . . . . . . 9 ((Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
107106ad2antlr 706 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
108 fveq1 6331 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (𝑑𝑖) = (𝑐𝑖))
109108breq1d 4796 . . . . . . . . . . . . . 14 (𝑑 = 𝑐 → ((𝑑𝑖) ≤ 𝑥 ↔ (𝑐𝑖) ≤ 𝑥))
110109, 108ifbieq1d 4248 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥) = if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥))
111108, 110ifeq12d 4245 . . . . . . . . . . . 12 (𝑑 = 𝑐 → if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)) = if(𝑖𝑌, (𝑐𝑖), if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥)))
112111mpteq2dv 4879 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))) = (𝑖𝑊 ↦ if(𝑖𝑌, (𝑐𝑖), if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥))))
113 eleq1w 2833 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖𝑌𝑗𝑌))
114 fveq2 6332 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑐𝑖) = (𝑐𝑗))
115114breq1d 4796 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑐𝑖) ≤ 𝑥 ↔ (𝑐𝑗) ≤ 𝑥))
116115, 114ifbieq1d 4248 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥) = if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))
117113, 114, 116ifbieq12d 4252 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → if(𝑖𝑌, (𝑐𝑖), if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥)) = if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))
118117cbvmptv 4884 . . . . . . . . . . . 12 (𝑖𝑊 ↦ if(𝑖𝑌, (𝑐𝑖), if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥))) = (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))
119118a1i 11 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑖𝑊 ↦ if(𝑖𝑌, (𝑐𝑖), if((𝑐𝑖) ≤ 𝑥, (𝑐𝑖), 𝑥))) = (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))
120112, 119eqtrd 2805 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))) = (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))
121120cbvmptv 4884 . . . . . . . . 9 (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))) = (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))
122121mpteq2i 4875 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
123 eqid 2771 . . . . . . . 8 ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))
124 simpr 471 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
125 oveq1 6800 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 − (𝐴𝑍)) = (𝑧 − (𝐴𝑍)))
126125oveq2d 6809 . . . . . . . . . 10 (𝑤 = 𝑧 → (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑤 − (𝐴𝑍))) = (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑧 − (𝐴𝑍))))
127 breq2 4790 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑑𝑖) ≤ 𝑤 ↔ (𝑑𝑖) ≤ 𝑥))
128 eqidd 2772 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → (𝑑𝑖) = (𝑑𝑖))
129 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥𝑤 = 𝑥)
130127, 128, 129ifbieq12d 4252 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤) = if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))
131130ifeq2d 4244 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)) = if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))
132131mpteq2dv 4879 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤))) = (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))))
133132mpteq2dv 4879 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))) = (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))
134133cbvmptv 4884 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))
135134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥))))))
136 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧𝑤 = 𝑧)
137135, 136fveq12d 6338 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → ((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤) = ((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧))
138137fveq1d 6334 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → (((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙)))
139138oveq2d 6809 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙))) = ((𝐶𝑙)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙))))
140139mpteq2dv 4879 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙)))) = (𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙)))))
141 fveq2 6332 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → (𝐶𝑙) = (𝐶𝑗))
142 fveq2 6332 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝐷𝑙) = (𝐷𝑗))
143142fveq2d 6336 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗)))
144141, 143oveq12d 6811 . . . . . . . . . . . . . . 15 (𝑙 = 𝑗 → ((𝐶𝑙)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙))) = ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗))))
145144cbvmptv 4884 . . . . . . . . . . . . . 14 (𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗))))
146145a1i 11 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗)))))
147140, 146eqtrd 2805 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗)))))
148147fveq2d 6336 . . . . . . . . . . 11 (𝑤 = 𝑧 → (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗))))))
149148oveq2d 6809 . . . . . . . . . 10 (𝑤 = 𝑧 → ((1 + 𝑟) · (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙)))))) = ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗)))))))
150126, 149breq12d 4799 . . . . . . . . 9 (𝑤 = 𝑧 → ((((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑤 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙)))))) ↔ (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗))))))))
151150cbvrabv 3349 . . . . . . . 8 {𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑤 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙))))))} = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑥, (𝑑𝑖), 𝑥)))))‘𝑧)‘(𝐷𝑗))))))}
152 eqid 2771 . . . . . . . 8 sup({𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑤 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙))))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) · (𝑤 − (𝐴𝑍))) ≤ ((1 + 𝑟) · (Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶𝑙)(𝐿𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑖𝑊 ↦ if(𝑖𝑌, (𝑑𝑖), if((𝑑𝑖) ≤ 𝑤, (𝑑𝑖), 𝑤)))))‘𝑤)‘(𝐷𝑙))))))}, ℝ, < )
153 hoidmvlelem5.i . . . . . . . . 9 (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
154153ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
155 hoidmvlelem5.s . . . . . . . . 9 (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
156155ad3antrrr 709 . . . . . . . 8 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
1574, 86, 87, 89, 91, 5, 92, 93, 103, 104, 105, 107, 122, 123, 124, 151, 152, 154, 156hoidmvlelem4 41332 . . . . . . 7 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶𝑖)(𝐿𝑊)(𝐷𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
15876, 84, 85, 157syl21anc 1475 . . . . . 6 ((((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
159158ralrimiva 3115 . . . . 5 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → ∀𝑟 ∈ ℝ+ (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
160 nfv 1995 . . . . . 6 𝑟((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
16143ad2antrr 705 . . . . . 6 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → (𝐴(𝐿𝑊)𝐵) ∈ ℝ*)
162 0xr 10288 . . . . . . . 8 0 ∈ ℝ*
163162a1i 11 . . . . . . 7 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → 0 ∈ ℝ*)
164 pnfxr 10294 . . . . . . . 8 +∞ ∈ ℝ*
165164a1i 11 . . . . . . 7 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → +∞ ∈ ℝ*)
16645ad2antrr 705 . . . . . . 7 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
16738ad2antrr 705 . . . . . . 7 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
168 ltpnf 12159 . . . . . . . 8 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
169168adantl 467 . . . . . . 7 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
170163, 165, 166, 167, 169elicod 12429 . . . . . 6 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ (0[,)+∞))
171160, 161, 170xralrple2 40086 . . . . 5 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → ((𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ↔ ∀𝑟 ∈ ℝ+ (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝑟) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))))
172159, 171mpbird 247 . . . 4 (((𝜑 ∧ ∀𝑠𝑊 (𝐴𝑠) < (𝐵𝑠)) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
17358, 69, 75, 172syl21anc 1475 . . 3 (((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) ∧ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) = +∞) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
17457, 173pm2.61dan 813 . 2 ((𝜑 ∧ ¬ ∃𝑠𝑊 (𝐵𝑠) ≤ (𝐴𝑠)) → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
17540, 174pm2.61dan 813 1 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cdif 3720  cun 3721  wss 3723  c0 4063  ifcif 4225  {csn 4316   ciun 4654   class class class wbr 4786  cmpt 4863  cres 5251  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009  Xcixp 8062  Fincfn 8109  supcsup 8502  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  cmin 10468  cn 11222  +crp 12035  [,)cico 12382  [,]cicc 12383  cprod 14842  volcvol 23451  Σ^csumge0 41096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-prod 14843  df-rest 16291  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cmp 21411  df-ovol 23452  df-vol 23453  df-sumge0 41097
This theorem is referenced by:  hoidmvle  41334
  Copyright terms: Public domain W3C validator