Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspdmvle Structured version   Visualization version   GIF version

Theorem hoidifhspdmvle 41359
 Description: The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspdmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidifhspdmvle.x (𝜑𝑋 ∈ Fin)
hoidifhspdmvle.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspdmvle.b (𝜑𝐵:𝑋⟶ℝ)
hoidifhspdmvle.k (𝜑𝐾𝑋)
hoidifhspdmvle.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
hoidifhspdmvle.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspdmvle (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐾,𝑐,,𝑥   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,,𝑐)   𝐷(𝑥,,𝑐)   𝐾(𝑘,𝑎,𝑏)   𝐿(𝑥,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hoidifhspdmvle
StepHypRef Expression
1 nfv 1993 . . 3 𝑘𝜑
2 hoidifhspdmvle.x . . 3 (𝜑𝑋 ∈ Fin)
3 hoidifhspdmvle.d . . . . . 6 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
4 hoidifhspdmvle.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
5 hoidifhspdmvle.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
63, 4, 2, 5hoidifhspf 41357 . . . . 5 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
76ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ)
8 hoidifhspdmvle.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
98ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
10 volicore 41320 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
117, 9, 10syl2anc 696 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
129rexrd 10302 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
13 icombl 23553 . . . . 5 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
147, 12, 13syl2anc 696 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
15 volge0 40699 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
1614, 15syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
175ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
18 volicore 41320 . . . 4 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
1917, 9, 18syl2anc 696 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
20 icombl 23553 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2117, 12, 20syl2anc 696 . . . 4 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2217rexrd 10302 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
234adantr 472 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
2423adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ)
2517adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ∈ ℝ)
26 max2 12232 . . . . . . . 8 ((𝑌 ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
2724, 25, 26syl2anc 696 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
282adantr 472 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑋 ∈ Fin)
295adantr 472 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴:𝑋⟶ℝ)
30 simpr 479 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
313, 23, 28, 29, 30hoidifhspval3 41358 . . . . . . . . 9 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
3231adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
33 iftrue 4237 . . . . . . . . 9 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3433adantl 473 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3532, 34eqtr2d 2796 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = (((𝐷𝑌)‘𝐴)‘𝑘))
3627, 35breqtrd 4831 . . . . . 6 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
3717leidd 10807 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
3837adantr 472 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (𝐴𝑘))
3931adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
40 iffalse 4240 . . . . . . . . 9 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4140adantl 473 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4239, 41eqtr2d 2796 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) = (((𝐷𝑌)‘𝐴)‘𝑘))
4338, 42breqtrd 4831 . . . . . 6 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
4436, 43pm2.61dan 867 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
459leidd 10807 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
46 icossico 12457 . . . . 5 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
4722, 12, 44, 45, 46syl22anc 1478 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
48 volss 23522 . . . 4 ((((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
4914, 21, 47, 48syl3anc 1477 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
501, 2, 11, 16, 19, 49fprodle 14947 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
51 hoidifhspdmvle.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
52 hoidifhspdmvle.k . . . . 5 (𝜑𝐾𝑋)
53 ne0i 4065 . . . . 5 (𝐾𝑋𝑋 ≠ ∅)
5452, 53syl 17 . . . 4 (𝜑𝑋 ≠ ∅)
5551, 2, 54, 6, 8hoidmvn0val 41323 . . 3 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
5651, 2, 54, 5, 8hoidmvn0val 41323 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5755, 56breq12d 4818 . 2 (𝜑 → ((((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
5850, 57mpbird 247 1 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ≠ wne 2933   ⊆ wss 3716  ∅c0 4059  ifcif 4231   class class class wbr 4805   ↦ cmpt 4882  dom cdm 5267  ⟶wf 6046  ‘cfv 6050  (class class class)co 6815   ↦ cmpt2 6817   ↑𝑚 cmap 8026  Fincfn 8124  ℝcr 10148  0cc0 10149  ℝ*cxr 10286   ≤ cle 10288  [,)cico 12391  ∏cprod 14855  volcvol 23453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-prod 14856  df-rest 16306  df-topgen 16327  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-top 20922  df-topon 20939  df-bases 20973  df-cmp 21413  df-ovol 23454  df-vol 23455 This theorem is referenced by:  hspmbllem2  41366
 Copyright terms: Public domain W3C validator