Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspdmvle Structured version   Visualization version   GIF version

Theorem hoidifhspdmvle 41359
Description: The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspdmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidifhspdmvle.x (𝜑𝑋 ∈ Fin)
hoidifhspdmvle.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspdmvle.b (𝜑𝐵:𝑋⟶ℝ)
hoidifhspdmvle.k (𝜑𝐾𝑋)
hoidifhspdmvle.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
hoidifhspdmvle.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspdmvle (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐾,𝑐,,𝑥   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,,𝑐)   𝐷(𝑥,,𝑐)   𝐾(𝑘,𝑎,𝑏)   𝐿(𝑥,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hoidifhspdmvle
StepHypRef Expression
1 nfv 1993 . . 3 𝑘𝜑
2 hoidifhspdmvle.x . . 3 (𝜑𝑋 ∈ Fin)
3 hoidifhspdmvle.d . . . . . 6 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
4 hoidifhspdmvle.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
5 hoidifhspdmvle.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
63, 4, 2, 5hoidifhspf 41357 . . . . 5 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
76ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ)
8 hoidifhspdmvle.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
98ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
10 volicore 41320 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
117, 9, 10syl2anc 696 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
129rexrd 10302 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
13 icombl 23553 . . . . 5 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
147, 12, 13syl2anc 696 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
15 volge0 40699 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
1614, 15syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
175ffvelrnda 6524 . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
18 volicore 41320 . . . 4 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
1917, 9, 18syl2anc 696 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
20 icombl 23553 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2117, 12, 20syl2anc 696 . . . 4 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2217rexrd 10302 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
234adantr 472 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
2423adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ)
2517adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ∈ ℝ)
26 max2 12232 . . . . . . . 8 ((𝑌 ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
2724, 25, 26syl2anc 696 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
282adantr 472 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑋 ∈ Fin)
295adantr 472 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴:𝑋⟶ℝ)
30 simpr 479 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
313, 23, 28, 29, 30hoidifhspval3 41358 . . . . . . . . 9 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
3231adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
33 iftrue 4237 . . . . . . . . 9 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3433adantl 473 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3532, 34eqtr2d 2796 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = (((𝐷𝑌)‘𝐴)‘𝑘))
3627, 35breqtrd 4831 . . . . . 6 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
3717leidd 10807 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
3837adantr 472 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (𝐴𝑘))
3931adantr 472 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
40 iffalse 4240 . . . . . . . . 9 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4140adantl 473 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4239, 41eqtr2d 2796 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) = (((𝐷𝑌)‘𝐴)‘𝑘))
4338, 42breqtrd 4831 . . . . . 6 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
4436, 43pm2.61dan 867 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
459leidd 10807 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
46 icossico 12457 . . . . 5 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
4722, 12, 44, 45, 46syl22anc 1478 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
48 volss 23522 . . . 4 ((((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
4914, 21, 47, 48syl3anc 1477 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
501, 2, 11, 16, 19, 49fprodle 14947 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
51 hoidifhspdmvle.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
52 hoidifhspdmvle.k . . . . 5 (𝜑𝐾𝑋)
53 ne0i 4065 . . . . 5 (𝐾𝑋𝑋 ≠ ∅)
5452, 53syl 17 . . . 4 (𝜑𝑋 ≠ ∅)
5551, 2, 54, 6, 8hoidmvn0val 41323 . . 3 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
5651, 2, 54, 5, 8hoidmvn0val 41323 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5755, 56breq12d 4818 . 2 (𝜑 → ((((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
5850, 57mpbird 247 1 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  wss 3716  c0 4059  ifcif 4231   class class class wbr 4805  cmpt 4882  dom cdm 5267  wf 6046  cfv 6050  (class class class)co 6815  cmpt2 6817  𝑚 cmap 8026  Fincfn 8124  cr 10148  0cc0 10149  *cxr 10286  cle 10288  [,)cico 12391  cprod 14855  volcvol 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-prod 14856  df-rest 16306  df-topgen 16327  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-top 20922  df-topon 20939  df-bases 20973  df-cmp 21413  df-ovol 23454  df-vol 23455
This theorem is referenced by:  hspmbllem2  41366
  Copyright terms: Public domain W3C validator