MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofval Structured version   Visualization version   GIF version

Theorem hofval 17085
Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hofval.b 𝐵 = (Base‘𝐶)
hofval.h 𝐻 = (Hom ‘𝐶)
hofval.o · = (comp‘𝐶)
Assertion
Ref Expression
hofval (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑥,𝑦,𝐵   𝜑,𝑓,𝑔,,𝑥,𝑦   𝐶,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐻,𝑔,,𝑥,𝑦   · ,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem hofval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . 2 𝑀 = (HomF𝐶)
2 df-hof 17083 . . . 4 HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
32a1i 11 . . 3 (𝜑 → HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩))
4 simpr 479 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
54fveq2d 6348 . . . 4 ((𝜑𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
6 fvexd 6356 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) ∈ V)
74fveq2d 6348 . . . . . 6 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = (Base‘𝐶))
8 hofval.b . . . . . 6 𝐵 = (Base‘𝐶)
97, 8syl6eqr 2804 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = 𝐵)
10 simpr 479 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1110sqxpeqd 5290 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
12 simplr 809 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
1312fveq2d 6348 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
14 hofval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
1513, 14syl6eqr 2804 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1615oveqd 6822 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((1st𝑦)(Hom ‘𝑐)(1st𝑥)) = ((1st𝑦)𝐻(1st𝑥)))
1715oveqd 6822 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) = ((2nd𝑥)𝐻(2nd𝑦)))
1815fveq1d 6346 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
1912fveq2d 6348 . . . . . . . . . . 11 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = (comp‘𝐶))
20 hofval.o . . . . . . . . . . 11 · = (comp‘𝐶)
2119, 20syl6eqr 2804 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = · )
2221oveqd 6822 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦)) = (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)))
2321oveqd 6822 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥(comp‘𝑐)(2nd𝑦)) = (𝑥 · (2nd𝑦)))
2423oveqd 6822 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑔(𝑥(comp‘𝑐)(2nd𝑦))) = (𝑔(𝑥 · (2nd𝑦))))
25 eqidd 2753 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
2622, 24, 25oveq123d 6826 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓) = ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))
2718, 26mpteq12dv 4877 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)) = ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))
2816, 17, 27mpt2eq123dv 6874 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))
2911, 11, 28mpt2eq123dv 6874 . . . . 5 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
306, 9, 29csbied2 3694 . . . 4 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
315, 30opeq12d 4553 . . 3 ((𝜑𝑐 = 𝐶) → ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
32 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
33 opex 5073 . . . 4 ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V
3433a1i 11 . . 3 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V)
353, 31, 32, 34fvmptd 6442 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
361, 35syl5eq 2798 1 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  Vcvv 3332  csb 3666  cop 4319  cmpt 4873   × cxp 5256  cfv 6041  (class class class)co 6805  cmpt2 6807  1st c1st 7323  2nd c2nd 7324  Basecbs 16051  Hom chom 16146  compcco 16147  Catccat 16518  Homf chomf 16520  HomFchof 17081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-hof 17083
This theorem is referenced by:  hof1fval  17086  hof2fval  17088  hofcl  17092  hofpropd  17100
  Copyright terms: Public domain W3C validator