MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcl Structured version   Visualization version   GIF version

Theorem hofcl 16880
Description: Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
hofcl (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))

Proof of Theorem hofcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcl.m . . . 4 𝑀 = (HomF𝐶)
2 hofcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 eqid 2620 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2620 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2620 . . . 4 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5hofval 16873 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
7 fvex 6188 . . . . . 6 (Homf𝐶) ∈ V
8 fvex 6188 . . . . . . . 8 (Base‘𝐶) ∈ V
98, 8xpex 6947 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
109, 9mpt2ex 7232 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 7164 . . . . 5 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
126, 11syl 17 . . . 4 (𝜑 → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
1312opeq2d 4400 . . 3 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
146, 13eqtr4d 2657 . 2 (𝜑𝑀 = ⟨(Homf𝐶), (2nd𝑀)⟩)
15 eqid 2620 . . . . 5 (𝑂 ×c 𝐶) = (𝑂 ×c 𝐶)
16 hofcl.o . . . . . 6 𝑂 = (oppCat‘𝐶)
1716, 3oppcbas 16359 . . . . 5 (Base‘𝐶) = (Base‘𝑂)
1815, 17, 3xpcbas 16799 . . . 4 ((Base‘𝐶) × (Base‘𝐶)) = (Base‘(𝑂 ×c 𝐶))
19 eqid 2620 . . . 4 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2620 . . . 4 (Hom ‘(𝑂 ×c 𝐶)) = (Hom ‘(𝑂 ×c 𝐶))
21 eqid 2620 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2620 . . . 4 (Id‘(𝑂 ×c 𝐶)) = (Id‘(𝑂 ×c 𝐶))
23 eqid 2620 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2620 . . . 4 (comp‘(𝑂 ×c 𝐶)) = (comp‘(𝑂 ×c 𝐶))
25 eqid 2620 . . . 4 (comp‘𝐷) = (comp‘𝐷)
2616oppccat 16363 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
272, 26syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
2815, 27, 2xpccat 16811 . . . 4 (𝜑 → (𝑂 ×c 𝐶) ∈ Cat)
29 hofcl.u . . . . 5 (𝜑𝑈𝑉)
30 hofcl.d . . . . . 6 𝐷 = (SetCat‘𝑈)
3130setccat 16716 . . . . 5 (𝑈𝑉𝐷 ∈ Cat)
3229, 31syl 17 . . . 4 (𝜑𝐷 ∈ Cat)
33 eqid 2620 . . . . . . . 8 (Homf𝐶) = (Homf𝐶)
3433, 3homffn 16334 . . . . . . 7 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
3534a1i 11 . . . . . 6 (𝜑 → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
36 hofcl.h . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
37 df-f 5880 . . . . . 6 ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Homf𝐶) ⊆ 𝑈))
3835, 36, 37sylanbrc 697 . . . . 5 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
3930, 29setcbas 16709 . . . . . 6 (𝜑𝑈 = (Base‘𝐷))
4039feq3d 6019 . . . . 5 (𝜑 → ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷)))
4138, 40mpbid 222 . . . 4 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷))
42 eqid 2620 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
43 ovex 6663 . . . . . . 7 ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∈ V
44 ovex 6663 . . . . . . 7 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4543, 44mpt2ex 7232 . . . . . 6 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V
4642, 45fnmpt2i 7224 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))
4712fneq1d 5969 . . . . 5 (𝜑 → ((2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))))
4846, 47mpbiri 248 . . . 4 (𝜑 → (2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))))
492ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
50 simplrr 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
51 xp1st 7183 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
5250, 51syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑦) ∈ (Base‘𝐶))
5352adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
54 simplrl 799 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
55 xp1st 7183 . . . . . . . . . . . . . 14 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
5654, 55syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑥) ∈ (Base‘𝐶))
5756adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
58 xp2nd 7184 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
5950, 58syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑦) ∈ (Base‘𝐶))
6059adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
61 simplrl 799 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
62 1st2nd2 7190 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6354, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6564oveq1d 6650 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
6665oveqd 6652 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
67 xp2nd 7184 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
6854, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑥) ∈ (Base‘𝐶))
6968adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
7063fveq2d 6182 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
71 df-ov 6638 . . . . . . . . . . . . . . . . 17 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
7270, 71syl6eqr 2672 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
7372eleq2d 2685 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
7473biimpa 501 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
75 simplrr 800 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
763, 4, 5, 49, 57, 69, 60, 74, 75catcocl 16327 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
7766, 76eqeltrd 2699 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
783, 4, 5, 49, 53, 57, 60, 61, 77catcocl 16327 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
79 1st2nd2 7190 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8050, 79syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8180fveq2d 6182 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
82 df-ov 6638 . . . . . . . . . . . . 13 ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
8381, 82syl6eqr 2672 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8483adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8578, 84eleqtrrd 2702 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((Hom ‘𝐶)‘𝑦))
86 eqid 2620 . . . . . . . . . 10 ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) = ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))
8785, 86fmptd 6371 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦))
8829ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑈𝑉)
8933, 3, 4, 56, 68homfval 16333 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
9063fveq2d 6182 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
91 df-ov 6638 . . . . . . . . . . . . 13 ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
9290, 91syl6eqr 2672 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
9389, 92, 723eqtr4d 2664 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Hom ‘𝐶)‘𝑥))
9438ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
9594, 54ffvelrnd 6346 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
9693, 95eqeltrrd 2700 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) ∈ 𝑈)
9733, 3, 4, 52, 59homfval 16333 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
9880fveq2d 6182 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
99 df-ov 6638 . . . . . . . . . . . . 13 ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
10098, 99syl6eqr 2672 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
10197, 100, 833eqtr4d 2664 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Hom ‘𝐶)‘𝑦))
10294, 50ffvelrnd 6346 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) ∈ 𝑈)
103101, 102eqeltrrd 2700 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) ∈ 𝑈)
10430, 88, 21, 96, 103elsetchom 16712 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)) ↔ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦)))
10587, 104mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
10693, 101oveq12d 6653 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) = (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
107105, 106eleqtrrd 2702 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
108107ralrimivva 2968 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
109 eqid 2620 . . . . . . 7 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))
110109fmpt2 7222 . . . . . 6 (∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
111108, 110sylib 208 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
11212oveqd 6652 . . . . . . 7 (𝜑 → (𝑥(2nd𝑀)𝑦) = (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦))
11342ovmpt4g 6768 . . . . . . . 8 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
11445, 113mp3an3 1411 . . . . . . 7 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
115112, 114sylan9eq 2674 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
116 eqid 2620 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
117 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
118 simprr 795 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
11915, 18, 116, 4, 20, 117, 118xpchom 16801 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
1204, 16oppchom 16356 . . . . . . . 8 ((1st𝑥)(Hom ‘𝑂)(1st𝑦)) = ((1st𝑦)(Hom ‘𝐶)(1st𝑥))
121120xpeq1i 5125 . . . . . . 7 (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
122119, 121syl6eq 2670 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
123115, 122feq12d 6020 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦))))
124111, 123mpbird 247 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
125 eqid 2620 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
1262ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝐶 ∈ Cat)
12755adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑥) ∈ (Base‘𝐶))
128127adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (1st𝑥) ∈ (Base‘𝐶))
12967adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑥) ∈ (Base‘𝐶))
130129adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (2nd𝑥) ∈ (Base‘𝐶))
131 simpr 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
1323, 4, 125, 126, 128, 5, 130, 131catlid 16325 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓) = 𝑓)
133132oveq1d 6650 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))))
1343, 4, 125, 126, 128, 5, 130, 131catrid 16326 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
135133, 134eqtrd 2654 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
136135mpteq2dva 4735 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
137 df-ov 6638 . . . . . . 7 (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
1382adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝐶 ∈ Cat)
1393, 4, 125, 138, 127catidcl 16324 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(1st𝑥)) ∈ ((1st𝑥)(Hom ‘𝐶)(1st𝑥)))
1403, 4, 125, 138, 129catidcl 16324 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(2nd𝑥)) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑥)))
1411, 138, 3, 4, 127, 129, 127, 129, 5, 139, 140hof2val 16877 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
142137, 141syl5eqr 2668 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
14362adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
144143fveq2d 6182 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
145144, 91syl6eqr 2672 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
14633, 3, 4, 127, 129homfval 16333 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
147145, 146eqtrd 2654 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
148147reseq2d 5385 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
149 mptresid 5444 . . . . . . 7 (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓) = ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
150148, 149syl6eqr 2672 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
151136, 142, 1503eqtr4d 2664 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = ( I ↾ ((Homf𝐶)‘𝑥)))
152143, 143oveq12d 6653 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(2nd𝑀)𝑥) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩))
153143fveq2d 6182 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
15427adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑂 ∈ Cat)
155 eqid 2620 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
15615, 154, 138, 17, 3, 155, 125, 22, 127, 129xpcid 16810 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
15716, 125oppcid 16362 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
158138, 157syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (Id‘𝑂) = (Id‘𝐶))
159158fveq1d 6180 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝑂)‘(1st𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
160159opeq1d 4399 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩ = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
161153, 156, 1603eqtrd 2658 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
162152, 161fveq12d 6184 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩))
16329adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑈𝑉)
16438ffvelrnda 6345 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
16530, 23, 163, 164setcid 16717 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐷)‘((Homf𝐶)‘𝑥)) = ( I ↾ ((Homf𝐶)‘𝑥)))
166151, 162, 1653eqtr4d 2664 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((Homf𝐶)‘𝑥)))
16723ad2ant1 1080 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
168293ad2ant1 1080 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑈𝑉)
169363ad2ant1 1080 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ran (Homf𝐶) ⊆ 𝑈)
170 simp21 1092 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
171170, 55syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑥) ∈ (Base‘𝐶))
172170, 67syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑥) ∈ (Base‘𝐶))
173 simp22 1093 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
174173, 51syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑦) ∈ (Base‘𝐶))
175173, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑦) ∈ (Base‘𝐶))
176 simp23 1094 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)))
177 xp1st 7183 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
178176, 177syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑧) ∈ (Base‘𝐶))
179 xp2nd 7184 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
180176, 179syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑧) ∈ (Base‘𝐶))
181 simp3l 1087 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦))
18215, 18, 116, 4, 20, 170, 173xpchom 16801 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
183181, 182eleqtrd 2701 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
184 xp1st 7183 . . . . . . . 8 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
185183, 184syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
186185, 120syl6eleq 2709 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
187 xp2nd 7184 . . . . . . 7 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
188183, 187syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
189 simp3r 1088 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))
19015, 18, 116, 4, 20, 173, 176xpchom 16801 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧) = (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
191189, 190eleqtrd 2701 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
192 xp1st 7183 . . . . . . . 8 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
193191, 192syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
1944, 16oppchom 16356 . . . . . . 7 ((1st𝑦)(Hom ‘𝑂)(1st𝑧)) = ((1st𝑧)(Hom ‘𝐶)(1st𝑦))
195193, 194syl6eleq 2709 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑧)(Hom ‘𝐶)(1st𝑦)))
196 xp2nd 7184 . . . . . . 7 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
197191, 196syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
1981, 16, 30, 167, 168, 169, 3, 4, 171, 172, 174, 175, 178, 180, 186, 188, 195, 197hofcllem 16879 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
199170, 62syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
200 1st2nd2 7190 . . . . . . . . 9 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
201176, 200syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
202199, 201oveq12d 6653 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
203173, 79syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
204199, 203opeq12d 4401 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
205204, 201oveq12d 6653 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
206 1st2nd2 7190 . . . . . . . . . 10 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
207191, 206syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
208 1st2nd2 7190 . . . . . . . . . 10 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
209183, 208syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
210205, 207, 209oveq123d 6656 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
211 eqid 2620 . . . . . . . . 9 (comp‘𝑂) = (comp‘𝑂)
21215, 17, 3, 116, 4, 171, 172, 174, 175, 211, 5, 24, 178, 180, 185, 188, 193, 197xpcco2 16808 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
2133, 5, 16, 171, 174, 178oppcco 16358 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)) = ((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)))
214213opeq1d 4399 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩ = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
215210, 212, 2143eqtrd 2658 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
216202, 215fveq12d 6184 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩))
217 df-ov 6638 . . . . . 6 (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
218216, 217syl6eqr 2672 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))))
219199fveq2d 6182 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
220219, 91syl6eqr 2672 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
22133, 3, 4, 171, 172homfval 16333 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
222220, 221eqtrd 2654 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
223203fveq2d 6182 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
224223, 99syl6eqr 2672 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
22533, 3, 4, 174, 175homfval 16333 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
226224, 225eqtrd 2654 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
227222, 226opeq12d 4401 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩ = ⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩)
228201fveq2d 6182 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
229 df-ov 6638 . . . . . . . . 9 ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
230228, 229syl6eqr 2672 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Homf𝐶)(2nd𝑧)))
23133, 3, 4, 178, 180homfval 16333 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
232230, 231eqtrd 2654 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
233227, 232oveq12d 6653 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧)) = (⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧))))
234203, 201oveq12d 6653 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(2nd𝑀)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
235234, 207fveq12d 6184 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
236 df-ov 6638 . . . . . . 7 ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
237235, 236syl6eqr 2672 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)))
238199, 203oveq12d 6653 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩))
239238, 209fveq12d 6184 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
240 df-ov 6638 . . . . . . 7 ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)
241239, 240syl6eqr 2672 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)))
242233, 237, 241oveq123d 6656 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
243198, 218, 2423eqtr4d 2664 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)))
24418, 19, 20, 21, 22, 23, 24, 25, 28, 32, 41, 48, 124, 166, 243isfuncd 16506 . . 3 (𝜑 → (Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀))
245 df-br 4645 . . 3 ((Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀) ↔ ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
246244, 245sylib 208 . 2 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
24714, 246eqeltrd 2699 1 (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  Vcvv 3195  wss 3567  cop 4174   class class class wbr 4644  cmpt 4720   I cid 5013   × cxp 5102  ran crn 5105  cres 5106   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  cmpt2 6637  1st c1st 7151  2nd c2nd 7152  Basecbs 15838  Hom chom 15933  compcco 15934  Catccat 16306  Idccid 16307  Homf chomf 16308  oppCatcoppc 16352   Func cfunc 16495  SetCatcsetc 16706   ×c cxpc 16789  HomFchof 16869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-hom 15947  df-cco 15948  df-cat 16310  df-cid 16311  df-homf 16312  df-oppc 16353  df-func 16499  df-setc 16707  df-xpc 16793  df-hof 16871
This theorem is referenced by:  oppchofcl  16881  oppcyon  16890  yonedalem1  16893  yonedalem21  16894  yonedalem22  16899
  Copyright terms: Public domain W3C validator