MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2fval Structured version   Visualization version   GIF version

Theorem hof2fval 17116
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
Assertion
Ref Expression
hof2fval (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Distinct variable groups:   𝑓,𝑔,,𝐵   𝜑,𝑓,𝑔,   𝐶,𝑓,𝑔,   𝑓,𝐻,𝑔,   𝑓,𝑊,𝑔,   · ,𝑓,𝑔,   𝑓,𝑋,𝑔,   𝑓,𝑌,𝑔,   𝑓,𝑍,𝑔,
Allowed substitution hints:   𝑀(𝑓,𝑔,)

Proof of Theorem hof2fval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
3 hof1.b . . . 4 𝐵 = (Base‘𝐶)
4 hof1.h . . . 4 𝐻 = (Hom ‘𝐶)
5 hof2.o . . . 4 · = (comp‘𝐶)
61, 2, 3, 4, 5hofval 17113 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
7 fvex 6363 . . . 4 (Homf𝐶) ∈ V
8 fvex 6363 . . . . . . 7 (Base‘𝐶) ∈ V
93, 8eqeltri 2835 . . . . . 6 𝐵 ∈ V
109, 9xpex 7128 . . . . 5 (𝐵 × 𝐵) ∈ V
1110, 10mpt2ex 7416 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))) ∈ V
127, 11op2ndd 7345 . . 3 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
136, 12syl 17 . 2 (𝜑 → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
14 simprr 813 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑦 = ⟨𝑍, 𝑊⟩)
1514fveq2d 6357 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = (1st ‘⟨𝑍, 𝑊⟩))
16 hof2.z . . . . . . 7 (𝜑𝑍𝐵)
17 hof2.w . . . . . . 7 (𝜑𝑊𝐵)
18 op1stg 7346 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1916, 17, 18syl2anc 696 . . . . . 6 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2019adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2115, 20eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = 𝑍)
22 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2322fveq2d 6357 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
24 hof1.x . . . . . . 7 (𝜑𝑋𝐵)
25 hof1.y . . . . . . 7 (𝜑𝑌𝐵)
26 op1stg 7346 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2724, 25, 26syl2anc 696 . . . . . 6 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2827adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2923, 28eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = 𝑋)
3021, 29oveq12d 6832 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((1st𝑦)𝐻(1st𝑥)) = (𝑍𝐻𝑋))
3122fveq2d 6357 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
32 op2ndg 7347 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3324, 25, 32syl2anc 696 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3433adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3531, 34eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = 𝑌)
3614fveq2d 6357 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = (2nd ‘⟨𝑍, 𝑊⟩))
37 op2ndg 7347 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3816, 17, 37syl2anc 696 . . . . . 6 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3938adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
4036, 39eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = 𝑊)
4135, 40oveq12d 6832 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑌𝐻𝑊))
4222fveq2d 6357 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
43 df-ov 6817 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
4442, 43syl6eqr 2812 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝑋𝐻𝑌))
4521, 29opeq12d 4561 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ⟨(1st𝑦), (1st𝑥)⟩ = ⟨𝑍, 𝑋⟩)
4645, 40oveq12d 6832 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)) = (⟨𝑍, 𝑋· 𝑊))
4722, 40oveq12d 6832 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑥 · (2nd𝑦)) = (⟨𝑋, 𝑌· 𝑊))
4847oveqd 6831 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑔(𝑥 · (2nd𝑦))) = (𝑔(⟨𝑋, 𝑌· 𝑊)))
49 eqidd 2761 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑓 = 𝑓)
5046, 48, 49oveq123d 6835 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓) = ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))
5144, 50mpteq12dv 4885 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓)))
5230, 41, 51mpt2eq123dv 6883 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
53 opelxpi 5305 . . 3 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
5424, 25, 53syl2anc 696 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
55 opelxpi 5305 . . 3 ((𝑍𝐵𝑊𝐵) → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
5616, 17, 55syl2anc 696 . 2 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
57 ovex 6842 . . . 4 (𝑍𝐻𝑋) ∈ V
58 ovex 6842 . . . 4 (𝑌𝐻𝑊) ∈ V
5957, 58mpt2ex 7416 . . 3 (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V
6059a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V)
6113, 52, 54, 56, 60ovmpt2d 6954 1 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cop 4327  cmpt 4881   × cxp 5264  cfv 6049  (class class class)co 6814  cmpt2 6816  1st c1st 7332  2nd c2nd 7333  Basecbs 16079  Hom chom 16174  compcco 16175  Catccat 16546  Homf chomf 16548  HomFchof 17109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-hof 17111
This theorem is referenced by:  hof2val  17117
  Copyright terms: Public domain W3C validator