![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho2times | Structured version Visualization version GIF version |
Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho2times | ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11285 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 6806 | . . 3 ⊢ (2 ·op 𝑇) = ((1 + 1) ·op 𝑇) |
3 | ax-1cn 10200 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | hoadddir 29003 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1562 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
6 | 2, 5 | syl5eq 2817 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
7 | hoadddi 29002 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
8 | 3, 7 | mp3an1 1559 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
9 | 8 | anidms 556 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
10 | hoaddcl 28957 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 +op 𝑇): ℋ⟶ ℋ) | |
11 | 10 | anidms 556 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 𝑇): ℋ⟶ ℋ) |
12 | homulid2 28999 | . . 3 ⊢ ((𝑇 +op 𝑇): ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) |
14 | 6, 9, 13 | 3eqtr2d 2811 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⟶wf 6026 (class class class)co 6796 ℂcc 10140 1c1 10143 + caddc 10145 2c2 11276 ℋchil 28116 +op chos 28135 ·op chot 28136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-1cn 10200 ax-addcl 10202 ax-hilex 28196 ax-hfvadd 28197 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvdistr1 28205 ax-hvdistr2 28206 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-map 8015 df-2 11285 df-hosum 28929 df-homul 28930 |
This theorem is referenced by: opsqrlem6 29344 |
Copyright terms: Public domain | W3C validator |