![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmph0 | Structured version Visualization version GIF version |
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmph0 | ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphen 21808 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ {∅}) | |
2 | df1o2 7725 | . . . 4 ⊢ 1𝑜 = {∅} | |
3 | 1, 2 | syl6breqr 4826 | . . 3 ⊢ (𝐽 ≃ {∅} → 𝐽 ≈ 1𝑜) |
4 | hmphtop1 21802 | . . . 4 ⊢ (𝐽 ≃ {∅} → 𝐽 ∈ Top) | |
5 | en1top 21008 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1𝑜 ↔ 𝐽 = {∅})) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ≃ {∅} → (𝐽 ≈ 1𝑜 ↔ 𝐽 = {∅})) |
7 | 3, 6 | mpbid 222 | . 2 ⊢ (𝐽 ≃ {∅} → 𝐽 = {∅}) |
8 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
9 | sn0top 21023 | . . . 4 ⊢ {∅} ∈ Top | |
10 | hmphref 21804 | . . . 4 ⊢ ({∅} ∈ Top → {∅} ≃ {∅}) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅} ≃ {∅} |
12 | 8, 11 | syl6eqbr 4823 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≃ {∅}) |
13 | 7, 12 | impbii 199 | 1 ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1630 ∈ wcel 2144 ∅c0 4061 {csn 4314 class class class wbr 4784 1𝑜c1o 7705 ≈ cen 8105 Topctop 20917 ≃ chmph 21777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-1o 7712 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-top 20918 df-topon 20935 df-cn 21251 df-hmeo 21778 df-hmph 21779 |
This theorem is referenced by: hmphindis 21820 |
Copyright terms: Public domain | W3C validator |