Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmops Structured version   Visualization version   GIF version

Theorem hmops 29109
 Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmops ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)

Proof of Theorem hmops
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 28963 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 28963 . . 3 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 hoaddcl 28847 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 495 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
5 hmop 29011 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
653expb 1113 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
7 hmop 29011 . . . . . . 7 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
873expb 1113 . . . . . 6 ((𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
96, 8oveqan12d 6784 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ (𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
109anandirs 909 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
111, 2anim12i 591 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
12 hosval 28829 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑦) = ((𝑇𝑦) + (𝑈𝑦)))
1312oveq2d 6781 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
14133expa 1111 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
1514adantrl 754 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
16 simprl 811 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelrn 6472 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2rl 802 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 ffvelrn 6472 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
2019ad2ant2l 799 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
21 his7 28177 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2216, 18, 20, 21syl3anc 1439 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2315, 22eqtrd 2758 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2411, 23sylan 489 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
25 hosval 28829 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
2625oveq1d 6780 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
27263expa 1111 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
2827adantrr 755 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
29 ffvelrn 6472 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3029ad2ant2r 800 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
31 ffvelrn 6472 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
3231ad2ant2lr 801 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑥) ∈ ℋ)
33 simprr 813 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
34 ax-his2 28170 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3530, 32, 33, 34syl3anc 1439 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3628, 35eqtrd 2758 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3711, 36sylan 489 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3810, 24, 373eqtr4d 2768 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
3938ralrimivva 3073 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
40 elhmop 28962 . 2 ((𝑇 +op 𝑈) ∈ HrmOp ↔ ((𝑇 +op 𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦)))
414, 39, 40sylanbrc 701 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ⟶wf 5997  ‘cfv 6001  (class class class)co 6765   + caddc 10052   ℋchil 28006   +ℎ cva 28007   ·ih csp 28009   +op chos 28025  HrmOpcho 28037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-hilex 28086  ax-hfvadd 28087  ax-hfi 28166  ax-his1 28169  ax-his2 28170 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-2 11192  df-cj 13959  df-re 13960  df-im 13961  df-hosum 28819  df-hmop 28933 This theorem is referenced by:  hmopd  29111  leopadd  29221  opsqrlem4  29232
 Copyright terms: Public domain W3C validator