![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopre | Structured version Visualization version GIF version |
Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopre | ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmop 29115 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴)) | |
2 | 1 | 3anidm23 1530 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴)) |
3 | 2 | eqcomd 2776 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇‘𝐴))) |
4 | hmopf 29067 | . . . 4 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
5 | 4 | ffvelrnda 6502 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
6 | hire 28285 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ ↔ ((𝑇‘𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇‘𝐴)))) | |
7 | 5, 6 | sylancom 568 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ ↔ ((𝑇‘𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇‘𝐴)))) |
8 | 3, 7 | mpbird 247 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 ℋchil 28110 ·ih csp 28113 HrmOpcho 28141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-hilex 28190 ax-hfi 28270 ax-his1 28273 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-2 11280 df-cj 14046 df-re 14047 df-im 14048 df-hmop 29037 |
This theorem is referenced by: leop2 29317 leopadd 29325 leopmuli 29326 leoptri 29329 leoptr 29330 leopnmid 29331 |
Copyright terms: Public domain | W3C validator |