Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopf Structured version   Visualization version   GIF version

Theorem hmopf 29067
 Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopf (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem hmopf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 29066 . 2 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simplbi 479 1 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ℋchil 28110   ·ih csp 28113  HrmOpcho 28141 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-hilex 28190 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-hmop 29037 This theorem is referenced by:  hmopex  29068  hmopre  29116  hmopadj  29132  hmdmadj  29133  hmoplin  29135  eighmre  29156  eighmorth  29157  hmops  29213  hmopm  29214  hmopd  29215  hmopco  29216  leop2  29317  leoppos  29319  leoprf  29321  leopsq  29322  leopadd  29325  leopmuli  29326  leopmul  29327  leopmul2i  29328  leopnmid  29331  nmopleid  29332  opsqrlem1  29333  opsqrlem6  29338  elpjrn  29383
 Copyright terms: Public domain W3C validator