![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version |
Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elhmop 29066 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
2 | 1 | simplbi 479 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ℋchil 28110 ·ih csp 28113 HrmOpcho 28141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-hilex 28190 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-map 8010 df-hmop 29037 |
This theorem is referenced by: hmopex 29068 hmopre 29116 hmopadj 29132 hmdmadj 29133 hmoplin 29135 eighmre 29156 eighmorth 29157 hmops 29213 hmopm 29214 hmopd 29215 hmopco 29216 leop2 29317 leoppos 29319 leoprf 29321 leopsq 29322 leopadd 29325 leopmuli 29326 leopmul 29327 leopmul2i 29328 leopnmid 29331 nmopleid 29332 opsqrlem1 29333 opsqrlem6 29338 elpjrn 29383 |
Copyright terms: Public domain | W3C validator |