![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopex | Structured version Visualization version GIF version |
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopex | ⊢ HrmOp ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6718 | . 2 ⊢ ( ℋ ↑𝑚 ℋ) ∈ V | |
2 | hmopf 28861 | . . . 4 ⊢ (𝑡 ∈ HrmOp → 𝑡: ℋ⟶ ℋ) | |
3 | ax-hilex 27984 | . . . . 5 ⊢ ℋ ∈ V | |
4 | 3, 3 | elmap 7928 | . . . 4 ⊢ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
5 | 2, 4 | sylibr 224 | . . 3 ⊢ (𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑𝑚 ℋ)) |
6 | 5 | ssriv 3640 | . 2 ⊢ HrmOp ⊆ ( ℋ ↑𝑚 ℋ) |
7 | 1, 6 | ssexi 4836 | 1 ⊢ HrmOp ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ⟶wf 5922 (class class class)co 6690 ↑𝑚 cmap 7899 ℋchil 27904 HrmOpcho 27935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-hilex 27984 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-hmop 28831 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |