Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeof1o Structured version   Visualization version   GIF version

Theorem hmeof1o 21787
 Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1 𝑋 = 𝐽
hmeof1o.2 𝑌 = 𝐾
Assertion
Ref Expression
hmeof1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 21783 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 21264 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
3 hmeof1o.1 . . . . . 6 𝑋 = 𝐽
43toptopon 20941 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
52, 4sylib 208 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
6 cntop2 21265 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
7 hmeof1o.2 . . . . . 6 𝑌 = 𝐾
87toptopon 20941 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
96, 8sylib 208 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌))
105, 9jca 495 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
111, 10syl 17 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
12 hmeof1o2 21786 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋1-1-onto𝑌)
13123expia 1113 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌))
1411, 13mpcom 38 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∪ cuni 4572  –1-1-onto→wf1o 6030  ‘cfv 6031  (class class class)co 6792  Topctop 20917  TopOnctopon 20934   Cn ccn 21248  Homeochmeo 21776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-top 20918  df-topon 20935  df-cn 21251  df-hmeo 21778 This theorem is referenced by:  hmeoopn  21789  hmeocld  21790  hmeontr  21792  hmeoimaf1o  21793  hmeoqtop  21798  haushmphlem  21810  cmphmph  21811  connhmph  21812  reghmph  21816  nrmhmph  21817  hmphdis  21819  hmphen2  21822  cmphaushmeo  21823  txhmeo  21826  tpr2rico  30292  mndpluscn  30306
 Copyright terms: Public domain W3C validator