![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocnvb | Structured version Visualization version GIF version |
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnvb | ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnv 21786 | . . 3 ⊢ (◡𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐾Homeo𝐽)) | |
2 | dfrel2 5724 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | eleq1 2838 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | |
4 | 2, 3 | sylbi 207 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
5 | 1, 4 | syl5ib 234 | . 2 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))) |
6 | hmeocnv 21786 | . 2 ⊢ (𝐹 ∈ (𝐾Homeo𝐽) → ◡𝐹 ∈ (𝐽Homeo𝐾)) | |
7 | 5, 6 | impbid1 215 | 1 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ◡ccnv 5248 Rel wrel 5254 (class class class)co 6793 Homeochmeo 21777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-map 8011 df-top 20919 df-topon 20936 df-cn 21252 df-hmeo 21779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |