![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocn | Structured version Visualization version GIF version |
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishmeo 21783 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
2 | 1 | simplbi 485 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ◡ccnv 5249 (class class class)co 6796 Cn ccn 21249 Homeochmeo 21777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-map 8015 df-top 20919 df-topon 20936 df-cn 21252 df-hmeo 21779 |
This theorem is referenced by: hmeocnv 21786 hmeof1o2 21787 hmeof1o 21788 hmeoopn 21790 hmeocld 21791 hmeocls 21792 hmeontr 21793 hmeoimaf1o 21794 hmeores 21795 hmeoco 21796 hmeoqtop 21799 hmphen 21809 haushmphlem 21811 cmphmph 21812 connhmph 21813 reghmph 21817 nrmhmph 21818 txhmeo 21827 xpstopnlem1 21833 tgpconncompeqg 22135 tgpconncomp 22136 qustgpopn 22143 mbfimaopnlem 23642 mndpluscn 30312 hmeocldb 32666 |
Copyright terms: Public domain | W3C validator |