![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocls | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeocls | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 21612 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | hmeoopn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | cncls2i 21122 | . . . 4 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
4 | 1, 3 | sylan 487 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
5 | imacnvcnv 5634 | . . . 4 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
6 | 5 | fveq2i 6232 | . . 3 ⊢ ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) = ((cls‘𝐾)‘(𝐹 “ 𝐴)) |
7 | imacnvcnv 5634 | . . 3 ⊢ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)) | |
8 | 4, 6, 7 | 3sstr3g 3678 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴))) |
9 | hmeocn 21611 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
10 | 2 | cnclsi 21124 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
11 | 9, 10 | sylan 487 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
12 | 8, 11 | eqssd 3653 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∪ cuni 4468 ◡ccnv 5142 “ cima 5146 ‘cfv 5926 (class class class)co 6690 clsccl 20870 Cn ccn 21076 Homeochmeo 21604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-top 20747 df-topon 20764 df-cld 20871 df-cls 20873 df-cn 21079 df-hmeo 21606 |
This theorem is referenced by: reghmph 21644 nrmhmph 21645 snclseqg 21966 |
Copyright terms: Public domain | W3C validator |