MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocld Structured version   Visualization version   GIF version

Theorem hmeocld 21793
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocld ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 21787 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
21adantr 472 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
3 imacnvcnv 5758 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
4 cnclima 21295 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
53, 4syl5eqelr 2845 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
65ex 449 . . 3 (𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
72, 6syl 17 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
8 hmeocn 21786 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
98adantr 472 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 cnclima 21295 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽))
1110ex 449 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
129, 11syl 17 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
13 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
14 eqid 2761 . . . . . . 7 𝐾 = 𝐾
1513, 14hmeof1o 21790 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
16 f1of1 6299 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1715, 16syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
18 f1imacnv 6316 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1917, 18sylan 489 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
2019eleq1d 2825 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
2112, 20sylibd 229 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽)))
227, 21impbid 202 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wss 3716   cuni 4589  ccnv 5266  cima 5270  1-1wf1 6047  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  Clsdccld 21043   Cn ccn 21251  Homeochmeo 21779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-map 8028  df-top 20922  df-topon 20939  df-cld 21046  df-cn 21254  df-hmeo 21781
This theorem is referenced by:  cldsubg  22136  reheibor  33970
  Copyright terms: Public domain W3C validator