![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlrelat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 29553 analog.) (Contributed by NM, 4-Feb-2012.) |
Ref | Expression |
---|---|
hlrelat5.b | ⊢ 𝐵 = (Base‘𝐾) |
hlrelat5.l | ⊢ ≤ = (le‘𝐾) |
hlrelat5.s | ⊢ < = (lt‘𝐾) |
hlrelat5.j | ⊢ ∨ = (join‘𝐾) |
hlrelat5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlrelat | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlrelat5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | hlrelat5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | hlrelat5.s | . . . 4 ⊢ < = (lt‘𝐾) | |
4 | hlrelat5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | hlrelat1 35207 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
6 | 5 | imp 444 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
7 | simpll1 1255 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) | |
8 | hllat 35171 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ Lat) |
10 | simpll2 1257 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
11 | 1, 4 | atbase 35097 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
12 | 11 | adantl 473 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
13 | hlrelat5.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
14 | 1, 2, 3, 13 | latnle 17306 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑝))) |
15 | 9, 10, 12, 14 | syl3anc 1477 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → (¬ 𝑝 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑝))) |
16 | 2, 3 | pltle 17182 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
17 | 16 | imp 444 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
18 | 17 | adantr 472 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝑋 ≤ 𝑌) |
19 | 18 | biantrurd 530 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → (𝑝 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑝 ≤ 𝑌))) |
20 | simpll3 1259 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
21 | 1, 2, 13 | latjle12 17283 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑝 ≤ 𝑌) ↔ (𝑋 ∨ 𝑝) ≤ 𝑌)) |
22 | 9, 10, 12, 20, 21 | syl13anc 1479 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → ((𝑋 ≤ 𝑌 ∧ 𝑝 ≤ 𝑌) ↔ (𝑋 ∨ 𝑝) ≤ 𝑌)) |
23 | 19, 22 | bitrd 268 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → (𝑝 ≤ 𝑌 ↔ (𝑋 ∨ 𝑝) ≤ 𝑌)) |
24 | 15, 23 | anbi12d 749 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌))) |
25 | 24 | rexbidva 3187 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌))) |
26 | 6, 25 | mpbid 222 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 lecple 16170 ltcplt 17162 joincjn 17165 Latclat 17266 Atomscatm 35071 HLchlt 35158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 |
This theorem is referenced by: hlrelat2 35210 atle 35243 2atlt 35246 |
Copyright terms: Public domain | W3C validator |