MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpasch Structured version   Visualization version   GIF version

Theorem hlpasch 25693
Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
Hypotheses
Ref Expression
hlpasch.p 𝑃 = (Base‘𝐺)
hlpasch.i 𝐼 = (Itv‘𝐺)
hlpasch.k 𝐾 = (hlG‘𝐺)
hlpasch.g (𝜑𝐺 ∈ TarskiG)
hlpasch.1 (𝜑𝐴𝑃)
hlpasch.2 (𝜑𝐵𝑃)
hlpasch.3 (𝜑𝐶𝑃)
hlpasch.4 (𝜑𝑋𝑃)
hlpasch.5 (𝜑𝐷𝑃)
hlpasch.6 (𝜑𝐴𝐵)
hlpasch.7 (𝜑𝐶(𝐾𝐵)𝐷)
hlpasch.8 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
Assertion
Ref Expression
hlpasch (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝐾   𝑃,𝑒   𝑒,𝑋   𝜑,𝑒

Proof of Theorem hlpasch
StepHypRef Expression
1 hlpasch.p . . . 4 𝑃 = (Base‘𝐺)
2 hlpasch.i . . . 4 𝐼 = (Itv‘𝐺)
3 eqid 2651 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
4 hlpasch.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 hlpasch.5 . . . . 5 (𝜑𝐷𝑃)
76adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 hlpasch.4 . . . . 5 (𝜑𝑋𝑃)
98adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋𝑃)
10 hlpasch.3 . . . . 5 (𝜑𝐶𝑃)
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
12 hlpasch.2 . . . . 5 (𝜑𝐵𝑃)
1312adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
14 hlpasch.1 . . . . 5 (𝜑𝐴𝑃)
1514adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴𝑃)
16 eqid 2651 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
17 simpr 476 . . . . 5 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
181, 16, 2, 5, 13, 11, 7, 17tgbtwncom 25428 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
19 hlpasch.8 . . . . 5 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
2019adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶))
211, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20outpasch 25692 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)))
22 hlpasch.k . . . . . . 7 𝐾 = (hlG‘𝐺)
23 simplr 807 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝑃)
2413ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵𝑃)
2515ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝑃)
265ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG)
27 simprr 811 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒))
281, 16, 2, 26, 24, 25, 23, 27tgbtwncom 25428 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵))
2926adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
3024adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
3125adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝑃)
3227adantr 480 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒))
33 simpr 476 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
3433oveq2d 6706 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵))
3532, 34eleqtrd 2732 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
361, 16, 2, 29, 30, 31, 35axtgbtwnid 25410 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴)
3736eqcomd 2657 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵)
38 hlpasch.6 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3938ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝐵)
4039adantr 480 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝐵)
4140neneqd 2828 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵)
4237, 41pm2.65da 599 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵)
4342neqned 2830 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝐵)
441, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39btwnhl2 25553 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾𝐵)𝑒)
457ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷𝑃)
469ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋𝑃)
47 simprl 809 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋))
481, 16, 2, 26, 45, 23, 46, 47tgbtwncom 25428 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷))
4944, 48jca 553 . . . . 5 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
5049ex 449 . . . 4 (((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5150reximdva 3046 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5221, 51mpd 15 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
536ad2antrr 762 . . . . . 6 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷𝑃)
5453adantr 480 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷𝑃)
55 simpr 476 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
5655breq2d 4697 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
5755eleq1d 2715 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
5856, 57anbi12d 747 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
5914ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝑃)
6059adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝑃)
6112ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵𝑃)
6261adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵𝑃)
634ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
6463adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG)
65 hlpasch.7 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐷)
661, 2, 22, 10, 6, 12, 4, 65hlcomd 25544 . . . . . . . . 9 (𝜑𝐷(𝐾𝐵)𝐶)
6766ad3antrrr 766 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐶)
6810adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
6968ad2antrr 762 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝑃)
7019adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶))
7170ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
72 simpr 476 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
7372oveq1d 6705 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶))
7471, 73eleqtrd 2732 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶))
751, 2, 22, 10, 6, 12, 4ishlg 25542 . . . . . . . . . . . 12 (𝜑 → (𝐶(𝐾𝐵)𝐷 ↔ (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))))
7665, 75mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))
7776simp1d 1093 . . . . . . . . . 10 (𝜑𝐶𝐵)
7877ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝐵)
7938ad2antrr 762 . . . . . . . . . 10 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝐵)
8079adantr 480 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝐵)
811, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80hlbtwn 25551 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾𝐵)𝐶𝐷(𝐾𝐵)𝐴))
8267, 81mpbid 222 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐴)
831, 2, 22, 54, 60, 62, 64, 82hlcomd 25544 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
848ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋𝑃)
8584adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋𝑃)
861, 16, 2, 64, 85, 54tgbtwntriv2 25427 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷))
8783, 86jca 553 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
8854, 58, 87rspcedvd 3348 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
8984ad2antrr 762 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋𝑃)
90 simpr 476 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
9190breq2d 4697 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝑋))
9290eleq1d 2715 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷)))
9391, 92anbi12d 747 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
9493ad4ant14 1317 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
95 simpr 476 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝑋)
961, 16, 2, 63, 84, 53tgbtwntriv1 25431 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷))
9796ad2antrr 762 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷))
9895, 97jca 553 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷)))
9989, 94, 98rspcedvd 3348 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
10053ad2antrr 762 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝑃)
101 simpr 476 . . . . . . . 8 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
102101breq2d 4697 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
103101eleq1d 2715 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
104102, 103anbi12d 747 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
10579ad2antrr 762 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝐵)
1061, 2, 22, 10, 6, 12, 4, 65hlne2 25546 . . . . . . . . . 10 (𝜑𝐷𝐵)
107106ad4antr 769 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝐵)
10863ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG)
10961ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵𝑃)
11059ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝑃)
11168ad2antrr 762 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐶𝑃)
112111adantr 480 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶𝑃)
11384ad2antrr 762 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋𝑃)
114 simpr 476 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴))
11570ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
116115adantr 480 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶))
1171, 16, 2, 108, 113, 109, 110, 112, 114, 116tgbtwnexch3 25434 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶))
118 simp-4r 824 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
1191, 2, 108, 109, 110, 100, 112, 117, 118tgbtwnconn3 25517 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))
120105, 107, 1193jca 1261 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))
1211, 2, 22, 14, 6, 12, 4ishlg 25542 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
122121ad4antr 769 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
123120, 122mpbird 247 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾𝐵)𝐷)
1241, 16, 2, 108, 113, 100tgbtwntriv2 25427 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷))
125123, 124jca 553 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
126100, 104, 125rspcedvd 3348 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1278ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝑃)
12812ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝑃)
12914ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴𝑃)
1304ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
131 simpr 476 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝐵)
132131neneqd 2828 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ¬ 𝑋 = 𝐵)
13363adantr 480 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
134133adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG)
135127adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋𝑃)
136129adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴𝑃)
137115adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶))
138 simpr 476 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶)
139138oveq2d 6706 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶))
140137, 139eleqtrrd 2733 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋))
1411, 16, 2, 134, 135, 136, 140axtgbtwnid 25410 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴)
142141olcd 407 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
143133adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐺 ∈ TarskiG)
144128adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵𝑃)
145111adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑃)
146127adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝑃)
147129adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐴𝑃)
148 simpr 476 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝐶)
149148necomd 2878 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑋)
150149neneqd 2828 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → ¬ 𝐶 = 𝑋)
15153adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝑃)
152106ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝐵)
153 simplr 807 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
1541, 2, 3, 133, 151, 128, 127, 152, 153lncom 25562 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵))
15577necomd 2878 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵𝐶)
156155ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝐶)
15766ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷(𝐾𝐵)𝐶)
1581, 2, 22, 151, 111, 128, 133, 3, 157hlln 25547 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵))
1591, 2, 3, 133, 128, 111, 151, 156, 158lncom 25562 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶))
160159orcd 406 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1611, 2, 3, 133, 127, 151, 128, 111, 154, 160coltr 25587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1621, 3, 2, 133, 128, 111, 127, 161colrot1 25499 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋))
163162orcomd 402 . . . . . . . . . . . . . . . 16 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
164163adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
165164ord 391 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (¬ 𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
166150, 165mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))
1671, 3, 2, 133, 127, 129, 111, 115btwncolg3 25497 . . . . . . . . . . . . . 14 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
168167adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1691, 2, 3, 143, 144, 145, 146, 147, 166, 168coltr 25587 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
170142, 169pm2.61dane 2910 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1711, 3, 2, 133, 127, 129, 128, 170colrot2 25500 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋))
1721, 3, 2, 133, 128, 127, 129, 171colcom 25498 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
173172orcomd 402 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
174173ord 391 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (¬ 𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
175132, 174mpd 15 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))
1761, 2, 22, 127, 128, 129, 130, 129, 3, 175lnhl 25555 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴(𝐾𝐵)𝑋𝐵 ∈ (𝑋𝐼𝐴)))
17799, 126, 176mpjaodan 844 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
17888, 177pm2.61dane 2910 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1794adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
1808adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋𝑃)
18112adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18214adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
1836adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
184 simpr 476 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
1851, 16, 2, 179, 180, 181, 68, 182, 183, 70, 184axtgpasch 25411 . . . . 5 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
186185adantr 480 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
187 simplr 807 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝑃)
188182ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴𝑃)
189181ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝑃)
190179ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG)
191 simprl 809 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵))
1921, 16, 2, 190, 188, 187, 189, 191tgbtwncom 25428 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴))
19338necomd 2878 . . . . . . . . . 10 (𝜑𝐵𝐴)
194193ad4antr 769 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝐴)
195190adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
1966ad5antr 773 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑃)
1978ad5antr 773 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋𝑃)
198189adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
199 simp-4r 824 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
200106necomd 2878 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝐷)
201200ad5antr 773 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
202201neneqd 2828 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷)
203199, 202jca 553 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
204 ioran 510 . . . . . . . . . . . . . . 15 (¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
205203, 204sylibr 224 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷))
2061, 3, 2, 195, 198, 196, 197, 205ncolrot2 25503 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
207 simpr 476 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
208187adantr 480 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒𝑃)
2091, 2, 3, 195, 196, 197, 198, 206ncolne1 25565 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
210 simplrr 818 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋))
2111, 2, 3, 195, 196, 197, 208, 209, 210btwnlng1 25559 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋))
212207, 211eqeltrrd 2731 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋))
2131, 3, 2, 195, 196, 197, 212tglngne 25490 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
2141, 2, 3, 195, 196, 197, 213tglinerflx1 25573 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋))
215106ad5antr 773 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝐵)
216215necomd 2878 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
2171, 2, 3, 195, 198, 196, 216tglinerflx1 25573 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷))
2181, 2, 3, 195, 198, 196, 216tglinerflx2 25574 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷))
2191, 2, 3, 195, 196, 197, 198, 196, 206, 212, 214, 217, 218tglineinteq 25585 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷)
220219eqcomd 2657 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 = 𝐵)
221215neneqd 2828 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐷 = 𝐵)
222220, 221pm2.65da 599 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵)
223222neqned 2830 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝐵)
2241, 2, 22, 189, 188, 187, 190, 188, 192, 194, 223btwnhl1 25552 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾𝐵)𝐴)
2251, 2, 22, 187, 188, 189, 190, 224hlcomd 25544 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾𝐵)𝑒)
226179ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG)
227183ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷𝑃)
228 simplr 807 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒𝑃)
229180ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋𝑃)
230 simpr 476 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋))
2311, 16, 2, 226, 227, 228, 229, 230tgbtwncom 25428 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷))
232231adantrl 752 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷))
233225, 232jca 553 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
234233ex 449 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
235234reximdva 3046 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
236186, 235mpd 15 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
237178, 236pm2.61dan 849 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
23876simp3d 1095 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
23952, 237, 238mpjaodan 844 1 (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  hlGchlg 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkgld 25396  df-trkg 25397  df-cgrg 25451  df-leg 25523  df-hlg 25541  df-mir 25593  df-rag 25634  df-perpg 25636
This theorem is referenced by:  inaghl  25776
  Copyright terms: Public domain W3C validator