![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmcv | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmcv | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2770 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2770 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
4 | eqid 2770 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2770 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
6 | eqid 2770 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
7 | eqid 2770 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 35154 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾)))))) |
9 | 8 | simplbi 479 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 lecple 16155 ltcplt 17148 joincjn 17151 0.cp0 17244 1.cp1 17245 CLatccla 17314 OMLcoml 34977 Atomscatm 35065 CvLatclc 35067 HLchlt 35152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-hlat 35153 |
This theorem is referenced by: hloml 35159 hlclat 35160 hlcvl 35161 cvr1 35211 cvrp 35217 atcvr1 35218 atcvr2 35219 |
Copyright terms: Public domain | W3C validator |