Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Visualization version   GIF version

Theorem hlmod1i 35637
Description: A version of the modular law pmod1i 35629 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b 𝐵 = (Base‘𝐾)
hlmod.l = (le‘𝐾)
hlmod.j = (join‘𝐾)
hlmod.m = (meet‘𝐾)
hlmod.f 𝐹 = (pmap‘𝐾)
hlmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
hlmod1i ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3 𝐵 = (Base‘𝐾)
2 hlmod.l . . 3 = (le‘𝐾)
3 hllat 35145 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1127 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ Lat)
5 simp21 1246 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋𝐵)
6 simp22 1247 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑌𝐵)
7 hlmod.j . . . . . 6 = (join‘𝐾)
81, 7latjcl 17244 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
94, 5, 6, 8syl3anc 1473 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑌) ∈ 𝐵)
10 simp23 1248 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑍𝐵)
11 hlmod.m . . . . 5 = (meet‘𝐾)
121, 11latmcl 17245 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
134, 9, 10, 12syl3anc 1473 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
141, 11latmcl 17245 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
154, 6, 10, 14syl3anc 1473 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑌 𝑍) ∈ 𝐵)
161, 7latjcl 17244 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
174, 5, 15, 16syl3anc 1473 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
18 simp1 1130 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ HL)
19 eqid 2752 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
20 hlmod.f . . . . . . . . 9 𝐹 = (pmap‘𝐾)
211, 19, 20pmapssat 35540 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
2218, 5, 21syl2anc 696 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
231, 19, 20pmapssat 35540 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2418, 6, 23syl2anc 696 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
25 eqid 2752 . . . . . . . . 9 (PSubSp‘𝐾) = (PSubSp‘𝐾)
261, 25, 20pmapsub 35549 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑍𝐵) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
274, 10, 26syl2anc 696 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
28 simp3l 1241 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋 𝑍)
291, 2, 20pmaple 35542 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3018, 5, 10, 29syl3anc 1473 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3128, 30mpbid 222 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (𝐹𝑍))
32 hlmod.p . . . . . . . . 9 + = (+𝑃𝐾)
3319, 25, 32pmod1i 35629 . . . . . . . 8 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹𝑋) ⊆ (𝐹𝑍) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍)))))
34333impia 1109 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹𝑋) ⊆ (𝐹𝑍)) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
3518, 22, 24, 27, 31, 34syl131anc 1486 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
361, 11, 19, 20pmapmeet 35554 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
3718, 9, 10, 36syl3anc 1473 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
38 simp3r 1242 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
3938ineq1d 3948 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4037, 39eqtrd 2786 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
411, 11, 19, 20pmapmeet 35554 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑍𝐵) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4218, 6, 10, 41syl3anc 1473 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4342oveq2d 6821 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
4435, 40, 433eqtr4d 2796 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))))
451, 7, 20, 32pmapjoin 35633 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
464, 5, 15, 45syl3anc 1473 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
4744, 46eqsstrd 3772 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
481, 2, 20pmaple 35542 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
4918, 13, 17, 48syl3anc 1473 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
5047, 49mpbird 247 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
511, 2, 7, 11mod1ile 17298 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
52513impia 1109 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
534, 5, 6, 10, 28, 52syl131anc 1486 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
541, 2, 4, 13, 17, 50, 53latasymd 17250 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
55543expia 1114 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  cin 3706  wss 3707   class class class wbr 4796  cfv 6041  (class class class)co 6805  Basecbs 16051  lecple 16142  joincjn 17137  meetcmee 17138  Latclat 17238  Atomscatm 35045  HLchlt 35132  PSubSpcpsubsp 35277  pmapcpmap 35278  +𝑃cpadd 35576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-lat 17239  df-clat 17301  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-psubsp 35284  df-pmap 35285  df-padd 35577
This theorem is referenced by:  atmod1i1  35638  atmod1i2  35640  llnmod1i2  35641
  Copyright terms: Public domain W3C validator