MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlln Structured version   Visualization version   GIF version

Theorem hlln 25722
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlln.l 𝐿 = (LineG‘𝐺)
hlln.2 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlln (𝜑𝐴 ∈ (𝐵𝐿𝐶))

Proof of Theorem hlln
StepHypRef Expression
1 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2760 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 472 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
76adantr 472 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
8 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 472 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
10 ishlg.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 472 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
12 simpr 479 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 25603 . . . 4 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
14133mix1d 1421 . . 3 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
154adantr 472 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
166adantr 472 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
1710adantr 472 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
188adantr 472 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
19 simpr 479 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
201, 2, 3, 15, 16, 17, 18, 19tgbtwncom 25603 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
21203mix2d 1422 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
22 hlln.2 . . . . 5 (𝜑𝐴(𝐾𝐶)𝐵)
23 ishlg.k . . . . . 6 𝐾 = (hlG‘𝐺)
241, 3, 23, 8, 10, 6, 4ishlg 25717 . . . . 5 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
2522, 24mpbid 222 . . . 4 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2625simp3d 1139 . . 3 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
2714, 21, 26mpjaodan 862 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
28 hlln.l . . 3 𝐿 = (LineG‘𝐺)
2925simp2d 1138 . . 3 (𝜑𝐵𝐶)
301, 28, 3, 4, 10, 6, 29, 8tgellng 25668 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
3127, 30mpbird 247 1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3o 1071  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  hlGchlg 25715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-hlg 25716
This theorem is referenced by:  hlperpnel  25837  opphllem4  25862  opphl  25866  hlpasch  25868  colhp  25882  hphl  25883  trgcopy  25916  cgracgr  25930  cgraswap  25932  acopy  25944  acopyeu  25945  tgasa1  25959
  Copyright terms: Public domain W3C validator