MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlipgt0 Structured version   Visualization version   GIF version

Theorem hlipgt0 28101
Description: The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlipgt0.1 𝑋 = (BaseSet‘𝑈)
hlipgt0.5 𝑍 = (0vec𝑈)
hlipgt0.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
hlipgt0 ((𝑈 ∈ CHilOLD𝐴𝑋𝐴𝑍) → 0 < (𝐴𝑃𝐴))

Proof of Theorem hlipgt0
StepHypRef Expression
1 hlnv 28078 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hlipgt0.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2761 . . . . . 6 (normCV𝑈) = (normCV𝑈)
42, 3nvcl 27847 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
543adant3 1127 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → ((normCV𝑈)‘𝐴) ∈ ℝ)
6 hlipgt0.5 . . . . . . . 8 𝑍 = (0vec𝑈)
72, 6, 3nvz 27855 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘𝐴) = 0 ↔ 𝐴 = 𝑍))
87biimpd 219 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘𝐴) = 0 → 𝐴 = 𝑍))
98necon3d 2954 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑍 → ((normCV𝑈)‘𝐴) ≠ 0))
1093impia 1110 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → ((normCV𝑈)‘𝐴) ≠ 0)
115, 10sqgt0d 13252 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 0 < (((normCV𝑈)‘𝐴)↑2))
12 hlipgt0.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
132, 3, 12ipidsq 27896 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((normCV𝑈)‘𝐴)↑2))
14133adant3 1127 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝐴𝑃𝐴) = (((normCV𝑈)‘𝐴)↑2))
1511, 14breqtrrd 4833 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 0 < (𝐴𝑃𝐴))
161, 15syl3an1 1167 1 ((𝑈 ∈ CHilOLD𝐴𝑋𝐴𝑍) → 0 < (𝐴𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933   class class class wbr 4805  cfv 6050  (class class class)co 6815  cr 10148  0cc0 10149   < clt 10287  2c2 11283  cexp 13075  NrmCVeccnv 27770  BaseSetcba 27772  0veccn0v 27774  normCVcnmcv 27776  ·𝑖OLDcdip 27886  CHilOLDchlo 28072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-sum 14637  df-grpo 27678  df-gid 27679  df-ginv 27680  df-ablo 27730  df-vc 27745  df-nv 27778  df-va 27781  df-ba 27782  df-sm 27783  df-0v 27784  df-nmcv 27786  df-dip 27887  df-cbn 28050  df-hlo 28073
This theorem is referenced by:  axhis4-zf  28185
  Copyright terms: Public domain W3C validator