![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlimadd | Structured version Visualization version GIF version |
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlimadd.3 | ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
hlimadd.4 | ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
hlimadd.5 | ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) |
hlimadd.6 | ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) |
hlimadd.7 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) |
Ref | Expression |
---|---|
hlimadd | ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 11912 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 11596 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | eqid 2756 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | eqid 2756 | . . . . . 6 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
5 | 3, 4 | hhims 28334 | . . . . 5 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
6 | 3, 5 | hhxmet 28337 | . . . 4 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
7 | eqid 2756 | . . . . 5 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
8 | 7 | mopntopon 22441 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
9 | 6, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
10 | hlimadd.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) | |
11 | hlimadd.4 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) | |
12 | hlimadd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) | |
13 | 3 | hhnv 28327 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
14 | df-hba 28131 | . . . . . . 7 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
15 | 3, 13, 14, 5, 7 | h2hlm 28142 | . . . . . 6 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑𝑚 ℕ)) |
16 | resss 5576 | . . . . . 6 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
17 | 15, 16 | eqsstri 3772 | . . . . 5 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
18 | 17 | ssbri 4845 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
19 | 12, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
20 | hlimadd.6 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) | |
21 | 17 | ssbri 4845 | . . . 4 ⊢ (𝐺 ⇝𝑣 𝐵 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
23 | 3 | hhva 28328 | . . . . 5 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
24 | 5, 7, 23 | vacn 27854 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
25 | 13, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
26 | hlimadd.7 | . . 3 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) | |
27 | 1, 2, 9, 9, 10, 11, 19, 22, 25, 26 | lmcn2 21650 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵)) |
28 | 10 | ffvelrnda 6518 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℋ) |
29 | 11 | ffvelrnda 6518 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℋ) |
30 | hvaddcl 28174 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℋ ∧ (𝐺‘𝑛) ∈ ℋ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) | |
31 | 28, 29, 30 | syl2anc 696 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) |
32 | 31, 26 | fmptd 6544 | . . 3 ⊢ (𝜑 → 𝐻:ℕ⟶ ℋ) |
33 | ax-hilex 28161 | . . . 4 ⊢ ℋ ∈ V | |
34 | nnex 11214 | . . . 4 ⊢ ℕ ∈ V | |
35 | 33, 34 | elmap 8048 | . . 3 ⊢ (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝐻:ℕ⟶ ℋ) |
36 | 32, 35 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐻 ∈ ( ℋ ↑𝑚 ℕ)) |
37 | 15 | breqi 4806 | . . 3 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 +ℎ 𝐵)) |
38 | ovex 6837 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) ∈ V | |
39 | 38 | brres 5556 | . . 3 ⊢ (𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 +ℎ 𝐵) ↔ (𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵) ∧ 𝐻 ∈ ( ℋ ↑𝑚 ℕ))) |
40 | 37, 39 | bitri 264 | . 2 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ (𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵) ∧ 𝐻 ∈ ( ℋ ↑𝑚 ℕ))) |
41 | 27, 36, 40 | sylanbrc 701 | 1 ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 〈cop 4323 class class class wbr 4800 ↦ cmpt 4877 ↾ cres 5264 ∘ ccom 5266 ⟶wf 6041 ‘cfv 6045 (class class class)co 6809 ↑𝑚 cmap 8019 1c1 10125 ℕcn 11208 ∞Metcxmt 19929 MetOpencmopn 19934 TopOnctopon 20913 Cn ccn 21226 ⇝𝑡clm 21228 ×t ctx 21561 NrmCVeccnv 27744 ℋchil 28081 +ℎ cva 28082 ·ℎ csm 28083 normℎcno 28085 −ℎ cmv 28087 ⇝𝑣 chli 28089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 ax-hilex 28161 ax-hfvadd 28162 ax-hvcom 28163 ax-hvass 28164 ax-hv0cl 28165 ax-hvaddid 28166 ax-hfvmul 28167 ax-hvmulid 28168 ax-hvmulass 28169 ax-hvdistr1 28170 ax-hvdistr2 28171 ax-hvmul0 28172 ax-hfi 28241 ax-his1 28244 ax-his2 28245 ax-his3 28246 ax-his4 28247 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-iin 4671 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-of 7058 df-om 7227 df-1st 7329 df-2nd 7330 df-supp 7460 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-2o 7726 df-oadd 7729 df-er 7907 df-map 8021 df-pm 8022 df-ixp 8071 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-fsupp 8437 df-fi 8478 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-icc 12371 df-fz 12516 df-fzo 12656 df-seq 12992 df-exp 13051 df-hash 13308 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-ress 16063 df-plusg 16152 df-mulr 16153 df-sca 16155 df-vsca 16156 df-ip 16157 df-tset 16158 df-ple 16159 df-ds 16162 df-hom 16164 df-cco 16165 df-rest 16281 df-topn 16282 df-0g 16300 df-gsum 16301 df-topgen 16302 df-pt 16303 df-prds 16306 df-xrs 16360 df-qtop 16365 df-imas 16366 df-xps 16368 df-mre 16444 df-mrc 16445 df-acs 16447 df-mgm 17439 df-sgrp 17481 df-mnd 17492 df-submnd 17533 df-mulg 17738 df-cntz 17946 df-cmn 18391 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-top 20897 df-topon 20914 df-topsp 20935 df-bases 20948 df-cn 21229 df-cnp 21230 df-lm 21231 df-tx 21563 df-hmeo 21756 df-xms 22322 df-tms 22324 df-grpo 27652 df-gid 27653 df-ginv 27654 df-gdiv 27655 df-ablo 27704 df-vc 27719 df-nv 27752 df-va 27755 df-ba 27756 df-sm 27757 df-0v 27758 df-vs 27759 df-nmcv 27760 df-ims 27761 df-hnorm 28130 df-hba 28131 df-hvsub 28133 df-hlim 28134 |
This theorem is referenced by: chscllem4 28804 |
Copyright terms: Public domain | W3C validator |