![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlim0 | Structured version Visualization version GIF version |
Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim0 | ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | eqid 2760 | . . . . 5 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | 1, 2 | hhxmet 28341 | . . . 4 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
4 | eqid 2760 | . . . . 5 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
5 | 4 | mopntopon 22445 | . . . 4 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ)) |
6 | 3, 5 | ax-mp 5 | . . 3 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) |
7 | ax-hv0cl 28169 | . . 3 ⊢ 0ℎ ∈ ℋ | |
8 | 1z 11599 | . . 3 ⊢ 1 ∈ ℤ | |
9 | nnuz 11916 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
10 | 9 | lmconst 21267 | . . 3 ⊢ (((MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ) |
11 | 6, 7, 8, 10 | mp3an 1573 | . 2 ⊢ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ |
12 | 7 | fconst6 6256 | . . 3 ⊢ (ℕ × {0ℎ}):ℕ⟶ ℋ |
13 | ax-hilex 28165 | . . . 4 ⊢ ℋ ∈ V | |
14 | nnex 11218 | . . . 4 ⊢ ℕ ∈ V | |
15 | 13, 14 | elmap 8052 | . . 3 ⊢ ((ℕ × {0ℎ}) ∈ ( ℋ ↑𝑚 ℕ) ↔ (ℕ × {0ℎ}):ℕ⟶ ℋ) |
16 | 12, 15 | mpbir 221 | . 2 ⊢ (ℕ × {0ℎ}) ∈ ( ℋ ↑𝑚 ℕ) |
17 | 1, 2, 4 | hhlm 28365 | . . . 4 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑𝑚 ℕ)) |
18 | 17 | breqi 4810 | . . 3 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑𝑚 ℕ))0ℎ) |
19 | 7 | elexi 3353 | . . . 4 ⊢ 0ℎ ∈ V |
20 | 19 | brres 5560 | . . 3 ⊢ ((ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑𝑚 ℕ))0ℎ ↔ ((ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ ∧ (ℕ × {0ℎ}) ∈ ( ℋ ↑𝑚 ℕ))) |
21 | 18, 20 | bitri 264 | . 2 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ ((ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ ∧ (ℕ × {0ℎ}) ∈ ( ℋ ↑𝑚 ℕ))) |
22 | 11, 16, 21 | mpbir2an 993 | 1 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2139 {csn 4321 〈cop 4327 class class class wbr 4804 × cxp 5264 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 1c1 10129 ℕcn 11212 ℤcz 11569 ∞Metcxmt 19933 MetOpencmopn 19938 TopOnctopon 20917 ⇝𝑡clm 21232 IndMetcims 27755 ℋchil 28085 +ℎ cva 28086 ·ℎ csm 28087 normℎcno 28089 0ℎc0v 28090 ⇝𝑣 chli 28093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 ax-hilex 28165 ax-hfvadd 28166 ax-hvcom 28167 ax-hvass 28168 ax-hv0cl 28169 ax-hvaddid 28170 ax-hfvmul 28171 ax-hvmulid 28172 ax-hvmulass 28173 ax-hvdistr1 28174 ax-hvdistr2 28175 ax-hvmul0 28176 ax-hfi 28245 ax-his1 28248 ax-his2 28249 ax-his3 28250 ax-his4 28251 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-n0 11485 df-z 11570 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-topgen 16306 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-top 20901 df-topon 20918 df-bases 20952 df-lm 21235 df-grpo 27656 df-gid 27657 df-ginv 27658 df-gdiv 27659 df-ablo 27708 df-vc 27723 df-nv 27756 df-va 27759 df-ba 27760 df-sm 27761 df-0v 27762 df-vs 27763 df-nmcv 27764 df-ims 27765 df-hnorm 28134 df-hvsub 28137 df-hlim 28138 |
This theorem is referenced by: hsn0elch 28414 |
Copyright terms: Public domain | W3C validator |