![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version |
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlid.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | ishlg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2771 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | ishlg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | hlln.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishlg.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | ishlg.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 25603 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
9 | 8 | olcd 863 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
10 | 1, 1, 9 | 3jca 1122 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴)))) |
11 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
12 | 2, 4, 11, 7, 7, 6, 5 | ishlg 25718 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
13 | 10, 12 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 hlGchlg 25716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-trkgc 25568 df-trkgcb 25570 df-trkg 25573 df-hlg 25717 |
This theorem is referenced by: opphl 25867 iscgra1 25923 cgraid 25932 cgrcgra 25934 dfcgra2 25942 tgsas1 25956 tgsas2 25958 tgsas3 25959 tgasa1 25960 tgsss1 25962 |
Copyright terms: Public domain | W3C validator |