Step | Hyp | Ref
| Expression |
1 | | hlhilset.l |
. 2
⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) |
2 | | hlhilset.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | elex 3316 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ V) |
4 | 3 | adantr 472 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ V) |
5 | 2, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ V) |
6 | | hlhilset.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | fvex 6314 |
. . . . . 6
⊢
(LHyp‘𝐾)
∈ V |
8 | 6, 7 | eqeltri 2799 |
. . . . 5
⊢ 𝐻 ∈ V |
9 | 8 | mptex 6602 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) ∈ V |
10 | | nfcv 2866 |
. . . . 5
⊢
Ⅎ𝑘𝐾 |
11 | | nfcv 2866 |
. . . . . 6
⊢
Ⅎ𝑘𝐻 |
12 | | nfcsb1v 3655 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) |
13 | 11, 12 | nfmpt 4854 |
. . . . 5
⊢
Ⅎ𝑘(𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) |
14 | | fveq2 6304 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
15 | 14, 6 | syl6eqr 2776 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
16 | | csbeq1a 3648 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) |
17 | 15, 16 | mpteq12dv 4841 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
18 | | df-hlhil 37644 |
. . . . 5
⊢ HLHil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
19 | 10, 13, 17, 18 | fvmptf 6415 |
. . . 4
⊢ ((𝐾 ∈ V ∧ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) ∈ V) → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
20 | 5, 9, 19 | sylancl 697 |
. . 3
⊢ (𝜑 → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
21 | 5 | adantr 472 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝐾 ∈ V) |
22 | | fvexd 6316 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) ∈ V) |
23 | | fvexd 6316 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) ∈ V) |
24 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑢) → 𝑣 = (Base‘𝑢)) |
25 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ((DVecH‘𝑘)‘𝑤) → 𝑢 = ((DVecH‘𝑘)‘𝑤)) |
26 | | simpr 479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
27 | 26 | fveq2d 6308 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (DVecH‘𝑘) = (DVecH‘𝐾)) |
28 | | simplr 809 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊) |
29 | 27, 28 | fveq12d 6310 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
30 | | hlhilset.u |
. . . . . . . . . . . . . 14
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
31 | 29, 30 | syl6eqr 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = 𝑈) |
32 | 25, 31 | sylan9eqr 2780 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → 𝑢 = 𝑈) |
33 | 32 | fveq2d 6308 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = (Base‘𝑈)) |
34 | | hlhilset.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑈) |
35 | 33, 34 | syl6eqr 2776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = 𝑉) |
36 | 24, 35 | sylan9eqr 2780 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉) |
37 | 36 | opeq2d 4516 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(Base‘ndx), 𝑣〉 = 〈(Base‘ndx),
𝑉〉) |
38 | 32 | adantr 472 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈) |
39 | 38 | fveq2d 6308 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = (+g‘𝑈)) |
40 | | hlhilset.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑈) |
41 | 39, 40 | syl6eqr 2776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = + ) |
42 | 41 | opeq2d 4516 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(+g‘ndx),
(+g‘𝑢)〉 = 〈(+g‘ndx),
+
〉) |
43 | 26 | fveq2d 6308 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (EDRing‘𝑘) = (EDRing‘𝐾)) |
44 | 43, 28 | fveq12d 6310 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑊)) |
45 | | hlhilset.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
46 | 44, 45 | syl6eqr 2776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = 𝐸) |
47 | 26 | fveq2d 6308 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HGMap‘𝑘) = (HGMap‘𝐾)) |
48 | 47, 28 | fveq12d 6310 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = ((HGMap‘𝐾)‘𝑊)) |
49 | | hlhilset.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
50 | 48, 49 | syl6eqr 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = 𝐺) |
51 | 50 | opeq2d 4516 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) →
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉 =
〈(*𝑟‘ndx), 𝐺〉) |
52 | 46, 51 | oveq12d 6783 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) = (𝐸 sSet
〈(*𝑟‘ndx), 𝐺〉)) |
53 | | hlhilset.r |
. . . . . . . . . . 11
⊢ 𝑅 = (𝐸 sSet
〈(*𝑟‘ndx), 𝐺〉) |
54 | 52, 53 | syl6eqr 2776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) = 𝑅) |
55 | 54 | opeq2d 4516 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 = 〈(Scalar‘ndx),
𝑅〉) |
56 | 55 | ad2antrr 764 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 = 〈(Scalar‘ndx),
𝑅〉) |
57 | 37, 42, 56 | tpeq123d 4390 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} = {〈(Base‘ndx),
𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉}) |
58 | 38 | fveq2d 6308 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = ( ·𝑠
‘𝑈)) |
59 | | hlhilset.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑈) |
60 | 58, 59 | syl6eqr 2776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = · ) |
61 | 60 | opeq2d 4516 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉 = 〈(
·𝑠 ‘ndx), ·
〉) |
62 | 26 | fveq2d 6308 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HDMap‘𝑘) = (HDMap‘𝐾)) |
63 | 62, 28 | fveq12d 6310 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = ((HDMap‘𝐾)‘𝑊)) |
64 | | hlhilset.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
65 | 63, 64 | syl6eqr 2776 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
66 | 65 | ad2antrr 764 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
67 | 66 | fveq1d 6306 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (((HDMap‘𝑘)‘𝑤)‘𝑦) = (𝑆‘𝑦)) |
68 | 67 | fveq1d 6306 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) = ((𝑆‘𝑦)‘𝑥)) |
69 | 36, 36, 68 | mpt2eq123dv 6834 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))) |
70 | | hlhilset.i |
. . . . . . . . . 10
⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) |
71 | 69, 70 | syl6eqr 2776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = , ) |
72 | 71 | opeq2d 4516 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) →
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉 =
〈(·𝑖‘ndx), , 〉) |
73 | 61, 72 | preq12d 4383 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉} = {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) |
74 | 57, 73 | uneq12d 3876 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
75 | 23, 74 | csbied 3666 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → ⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
76 | 22, 75 | csbied 3666 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
77 | 21, 76 | csbied 3666 |
. . 3
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
78 | 2 | simprd 482 |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐻) |
79 | | tpex 7074 |
. . . . 5
⊢
{〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx),
+ 〉,
〈(Scalar‘ndx), 𝑅〉} ∈ V |
80 | | prex 5014 |
. . . . 5
⊢ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈
V |
81 | 79, 80 | unex 7073 |
. . . 4
⊢
({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx),
+ 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V |
82 | 81 | a1i 11 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V) |
83 | 20, 77, 78, 82 | fvmptd 6402 |
. 2
⊢ (𝜑 → ((HLHil‘𝐾)‘𝑊) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
84 | 1, 83 | syl5eq 2770 |
1
⊢ (𝜑 → 𝐿 = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |