![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hleqnid | Structured version Visualization version GIF version |
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
Ref | Expression |
---|---|
hleqnid | ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2832 | . . 3 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝐴 ≠ 𝐴) |
3 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐵 ∈ 𝑃) |
10 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐺 ∈ TarskiG) |
12 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴(𝐾‘𝐴)𝐵) | |
13 | 3, 4, 5, 7, 9, 7, 11, 12 | hlne1 25545 | . 2 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ≠ 𝐴) |
14 | 2, 13 | mtand 692 | 1 ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 TarskiGcstrkg 25374 Itvcitv 25380 hlGchlg 25540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-hlg 25541 |
This theorem is referenced by: mirbtwnhl 25620 |
Copyright terms: Public domain | W3C validator |