MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcomb Structured version   Visualization version   GIF version

Theorem hlcomb 25697
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
Assertion
Ref Expression
hlcomb (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))

Proof of Theorem hlcomb
StepHypRef Expression
1 3ancoma 1084 . . 3 ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵𝐶𝐴𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2 orcom 401 . . . . 5 ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))
32a1i 11 . . . 4 (𝜑 → ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))
433anbi3d 1554 . . 3 (𝜑 → ((𝐵𝐶𝐴𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵𝐶𝐴𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))))
51, 4syl5bb 272 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵𝐶𝐴𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))))
6 ishlg.p . . 3 𝑃 = (Base‘𝐺)
7 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
8 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
9 ishlg.a . . 3 (𝜑𝐴𝑃)
10 ishlg.b . . 3 (𝜑𝐵𝑃)
11 ishlg.c . . 3 (𝜑𝐶𝑃)
12 ishlg.g . . 3 (𝜑𝐺𝑉)
136, 7, 8, 9, 10, 11, 12ishlg 25696 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
146, 7, 8, 10, 9, 11, 12ishlg 25696 . 2 (𝜑 → (𝐵(𝐾𝐶)𝐴 ↔ (𝐵𝐶𝐴𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))))
155, 13, 143bitr4d 300 1 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  Itvcitv 25534  hlGchlg 25694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-hlg 25695
This theorem is referenced by:  hlcomd  25698
  Copyright terms: Public domain W3C validator