![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 34961 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp2d 1094 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 CLatccla 17154 OMLcoml 34780 CvLatclc 34870 HLchlt 34955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-hlat 34956 |
This theorem is referenced by: hlomcmat 34969 glbconN 34981 pmaple 35365 pmapglbx 35373 polsubN 35511 2polvalN 35518 2polssN 35519 3polN 35520 2pmaplubN 35530 paddunN 35531 poldmj1N 35532 pnonsingN 35537 ispsubcl2N 35551 psubclinN 35552 paddatclN 35553 polsubclN 35556 poml4N 35557 diaglbN 36661 diaintclN 36664 dibglbN 36772 dibintclN 36773 dihglblem2N 36900 dihglblem3N 36901 dihglblem4 36903 dihglbcpreN 36906 dihglblem6 36946 dihintcl 36950 dochval2 36958 dochcl 36959 dochvalr 36963 dochss 36971 |
Copyright terms: Public domain | W3C validator |