Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbtwn Structured version   Visualization version   GIF version

Theorem hlbtwn 25726
 Description: Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlbtwn.1 (𝜑𝐷 ∈ (𝐶𝐼𝐵))
hlbtwn.2 (𝜑𝐵𝐶)
hlbtwn.3 (𝜑𝐷𝐶)
Assertion
Ref Expression
hlbtwn (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴(𝐾𝐶)𝐷))

Proof of Theorem hlbtwn
StepHypRef Expression
1 hlbtwn.2 . . . 4 (𝜑𝐵𝐶)
2 hlbtwn.3 . . . 4 (𝜑𝐷𝐶)
31, 22thd 255 . . 3 (𝜑 → (𝐵𝐶𝐷𝐶))
4 ishlg.p . . . . . 6 𝑃 = (Base‘𝐺)
5 ishlg.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
8 ishlg.c . . . . . . 7 (𝜑𝐶𝑃)
98adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
10 ishlg.a . . . . . . 7 (𝜑𝐴𝑃)
1110adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
12 hltr.d . . . . . . 7 (𝜑𝐷𝑃)
1312adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐷𝑃)
14 ishlg.b . . . . . . 7 (𝜑𝐵𝑃)
1514adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
16 simpr 479 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
17 hlbtwn.1 . . . . . . 7 (𝜑𝐷 ∈ (𝐶𝐼𝐵))
1817adantr 472 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
194, 5, 7, 9, 11, 13, 15, 16, 18tgbtwnconn3 25692 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
20 eqid 2760 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
216adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
228adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
2312adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷𝑃)
2414adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
2510adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
2617adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐵))
27 simpr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
284, 20, 5, 21, 22, 23, 24, 25, 26, 27tgbtwnexch 25613 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐴))
2928olcd 407 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
3019, 29jaodan 861 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
316adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐺 ∈ TarskiG)
328adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐶𝑃)
3310adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴𝑃)
3412adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐷𝑃)
3514adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐵𝑃)
36 simpr 479 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴 ∈ (𝐶𝐼𝐷))
3717adantr 472 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐷 ∈ (𝐶𝐼𝐵))
384, 20, 5, 31, 32, 33, 34, 35, 36, 37tgbtwnexch 25613 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴 ∈ (𝐶𝐼𝐵))
3938orcd 406 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
406adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
418adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
4212adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷𝑃)
4310adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
4414adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
452necomd 2987 . . . . . . 7 (𝜑𝐶𝐷)
4645adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐶𝐷)
47 simpr 479 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐴))
4817adantr 472 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐵))
494, 5, 40, 41, 42, 43, 44, 46, 47, 48tgbtwnconn1 25690 . . . . 5 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
5039, 49jaodan 861 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴))) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
5130, 50impbida 913 . . 3 (𝜑 → ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴))))
523, 513anbi23d 1551 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐴𝐶𝐷𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))))
53 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
544, 5, 53, 10, 14, 8, 6ishlg 25717 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
554, 5, 53, 10, 12, 8, 6ishlg 25717 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐷 ↔ (𝐴𝐶𝐷𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))))
5652, 54, 553bitr4d 300 1 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴(𝐾𝐶)𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  Itvcitv 25555  hlGchlg 25715 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508  df-s2 13813  df-s3 13814  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-cgrg 25626  df-hlg 25716 This theorem is referenced by:  opphllem3  25861  hlpasch  25868
 Copyright terms: Public domain W3C validator