![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 35168 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 35134 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 AtLatcal 35073 CvLatclc 35074 HLchlt 35159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-ov 6818 df-cvlat 35131 df-hlat 35160 |
This theorem is referenced by: hllat 35172 hlomcmat 35173 intnatN 35215 cvratlem 35229 atcvrj0 35236 atcvrneN 35238 atcvrj1 35239 atcvrj2b 35240 atltcvr 35243 cvrat4 35251 2atjm 35253 atbtwn 35254 3dim2 35276 2dim 35278 1cvrjat 35283 ps-2 35286 ps-2b 35290 islln3 35318 llnnleat 35321 llnexatN 35329 2llnmat 35332 2atm 35335 2llnm3N 35377 2llnm4 35378 2llnmeqat 35379 dalem21 35502 dalem24 35505 dalem25 35506 dalem54 35534 dalem55 35535 dalem57 35537 pmapat 35571 pmapeq0 35574 isline4N 35585 2lnat 35592 2llnma1b 35594 cdlema2N 35600 cdlemblem 35601 pmapjat1 35661 llnexchb2lem 35676 pol1N 35718 pnonsingN 35741 pclfinclN 35758 lhpocnle 35824 lhpmat 35838 lhpmatb 35839 lhp2at0 35840 lhp2atnle 35841 lhp2at0nle 35843 lhpat3 35854 4atexlemcnd 35880 ltrnmwOLD 35960 trlatn0 35981 ltrnnidn 35983 trlnidatb 35986 trlnle 35995 trlval3 35996 trlval4 35997 cdlemc5 36004 cdleme0e 36026 cdleme3 36046 cdleme7c 36054 cdleme7ga 36057 cdleme7 36058 cdleme11k 36077 cdleme15b 36084 cdleme16b 36088 cdleme16e 36091 cdleme16f 36092 cdlemednpq 36108 cdleme20zN 36110 cdleme20j 36127 cdleme22aa 36148 cdleme22cN 36151 cdleme22d 36152 cdlemf2 36371 cdlemb3 36415 cdlemg12e 36456 cdlemg17dALTN 36473 cdlemg19a 36492 cdlemg27b 36505 cdlemg31d 36509 cdlemg33c 36517 cdlemg33e 36519 trlcone 36537 cdlemi 36629 tendotr 36639 cdlemk17 36667 cdlemk52 36763 cdleml1N 36785 dian0 36849 dia0 36862 dia2dimlem1 36874 dia2dimlem2 36875 dia2dimlem3 36876 dih0cnv 37093 dihmeetlem4preN 37116 dihmeetlem7N 37120 dihmeetlem17N 37133 dihlspsnat 37143 dihatexv 37148 |
Copyright terms: Public domain | W3C validator |