![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 17267 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35172 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2771 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 35098 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 35098 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 17267 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 joincjn 17152 Latclat 17253 Atomscatm 35072 HLchlt 35159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-lub 17182 df-join 17184 df-lat 17254 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 |
This theorem is referenced by: hlatj12 35179 hlatjrot 35181 hlatlej2 35184 atbtwnex 35256 3noncolr2 35257 hlatcon2 35260 3dimlem2 35267 3dimlem3 35269 3dimlem3OLDN 35270 3dimlem4 35272 3dimlem4OLDN 35273 ps-1 35285 hlatexch4 35289 lplnribN 35359 4atlem10 35414 4atlem11 35417 dalemswapyz 35464 dalem-cly 35479 dalemswapyzps 35498 dalem24 35505 dalem25 35506 dalem44 35524 2llnma1 35595 2llnma3r 35596 2llnma2rN 35598 llnexchb2 35677 dalawlem4 35682 dalawlem5 35683 dalawlem9 35687 dalawlem11 35689 dalawlem12 35690 dalawlem15 35693 4atexlemex2 35879 4atexlemcnd 35880 ltrncnv 35954 trlcnv 35974 cdlemc6 36005 cdleme7aa 36051 cdleme12 36080 cdleme15a 36083 cdleme15c 36085 cdleme17c 36097 cdlemeda 36107 cdleme19a 36112 cdleme19e 36116 cdleme20bN 36119 cdleme20g 36124 cdleme20m 36132 cdleme21c 36136 cdleme22f 36155 cdleme22g 36157 cdleme35b 36259 cdleme35f 36263 cdleme37m 36271 cdleme39a 36274 cdleme42h 36291 cdleme43aN 36298 cdleme43bN 36299 cdleme43dN 36301 cdleme46f2g2 36302 cdleme46f2g1 36303 cdlemeg46c 36322 cdlemeg46nlpq 36326 cdlemeg46ngfr 36327 cdlemeg46rgv 36337 cdlemeg46gfv 36339 cdlemg2kq 36411 cdlemg4a 36417 cdlemg4d 36422 cdlemg4 36426 cdlemg8c 36438 cdlemg11aq 36447 cdlemg10a 36449 cdlemg12g 36458 cdlemg12 36459 cdlemg13 36461 cdlemg17pq 36481 cdlemg18b 36488 cdlemg18c 36489 cdlemg19 36493 cdlemg21 36495 cdlemk7 36657 cdlemk7u 36679 cdlemkfid1N 36730 dia2dimlem1 36874 dia2dimlem3 36876 dihjatcclem3 37230 dihjat 37233 |
Copyright terms: Public domain | W3C validator |