Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch1 Structured version   Visualization version   GIF version

Theorem hlatexch1 35203
Description: Atom exchange property. (Contributed by NM, 7-Jan-2012.)
Hypotheses
Ref Expression
hlatexchb.l = (le‘𝐾)
hlatexchb.j = (join‘𝐾)
hlatexchb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatexch1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) → 𝑄 (𝑅 𝑃)))

Proof of Theorem hlatexch1
StepHypRef Expression
1 hlcvl 35168 . 2 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2 hlatexchb.l . . 3 = (le‘𝐾)
3 hlatexchb.j . . 3 = (join‘𝐾)
4 hlatexchb.a . . 3 𝐴 = (Atoms‘𝐾)
52, 3, 4cvlatexch1 35145 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) → 𝑄 (𝑅 𝑃)))
61, 5syl3an1 1166 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) → 𝑄 (𝑅 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6793  lecple 16156  joincjn 17152  Atomscatm 35072  CvLatclc 35074  HLchlt 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160
This theorem is referenced by:  exatleN  35212  3noncolr2  35257  4noncolr3  35261  3atlem4  35294  3atlem6  35296  4atlem0ae  35402  dalem3  35472  dalem5  35475  dalem-cly  35479  dalem28  35508  cdlema1N  35599  cdlemblem  35601  paddasslem2  35629  pmodlem1  35654  osumcllem6N  35769  pexmidlem3N  35780  trlval4  35997  cdlemd3  36009  cdleme3h  36044  cdleme7aa  36051  cdleme11j  36076  cdleme15b  36084  cdlemg27b  36505
  Copyright terms: Public domain W3C validator