Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlateq Structured version   Visualization version   GIF version

Theorem hlateq 35206
Description: The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 29562 analog.) (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
hlatle.b 𝐵 = (Base‘𝐾)
hlatle.l = (le‘𝐾)
hlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlateq ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlateq
StepHypRef Expression
1 hlatle.b . . . . 5 𝐵 = (Base‘𝐾)
2 hlatle.l . . . . 5 = (le‘𝐾)
3 hlatle.a . . . . 5 𝐴 = (Atoms‘𝐾)
41, 2, 3hlatle 35205 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
51, 2, 3hlatle 35205 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
653com23 1121 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
74, 6anbi12d 749 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋))))
8 ralbiim 3207 . . 3 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
97, 8syl6rbbr 279 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (𝑋 𝑌𝑌 𝑋)))
10 hllat 35171 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
111, 2latasymb 17275 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
1210, 11syl3an1 1167 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
139, 12bitrd 268 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  Latclat 17266  Atomscatm 35071  HLchlt 35158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159
This theorem is referenced by:  lauteq  35902  ltrneq2  35955
  Copyright terms: Public domain W3C validator