![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hisubcomi | Structured version Visualization version GIF version |
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hisubcom.1 | ⊢ 𝐴 ∈ ℋ |
hisubcom.2 | ⊢ 𝐵 ∈ ℋ |
hisubcom.3 | ⊢ 𝐶 ∈ ℋ |
hisubcom.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hisubcomi | ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hisubcom.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
2 | hisubcom.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | hvnegdii 28250 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
4 | hisubcom.4 | . . . 4 ⊢ 𝐷 ∈ ℋ | |
5 | hisubcom.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
6 | 4, 5 | hvnegdii 28250 | . . 3 ⊢ (-1 ·ℎ (𝐷 −ℎ 𝐶)) = (𝐶 −ℎ 𝐷) |
7 | 3, 6 | oveq12i 6827 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) |
8 | neg1cn 11337 | . . . 4 ⊢ -1 ∈ ℂ | |
9 | 1, 2 | hvsubcli 28209 | . . . 4 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
10 | 4, 5 | hvsubcli 28209 | . . . 4 ⊢ (𝐷 −ℎ 𝐶) ∈ ℋ |
11 | 8, 8, 9, 10 | his35i 28277 | . . 3 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
12 | neg1rr 11338 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
13 | cjre 14099 | . . . . . . 7 ⊢ (-1 ∈ ℝ → (∗‘-1) = -1) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ (∗‘-1) = -1 |
15 | 14 | oveq2i 6826 | . . . . 5 ⊢ (-1 · (∗‘-1)) = (-1 · -1) |
16 | ax-1cn 10207 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 16, 16 | mul2negi 10691 | . . . . 5 ⊢ (-1 · -1) = (1 · 1) |
18 | 1t1e1 11388 | . . . . 5 ⊢ (1 · 1) = 1 | |
19 | 15, 17, 18 | 3eqtri 2787 | . . . 4 ⊢ (-1 · (∗‘-1)) = 1 |
20 | 19 | oveq1i 6825 | . . 3 ⊢ ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
21 | 9, 10 | hicli 28269 | . . . 4 ⊢ ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) ∈ ℂ |
22 | 21 | mulid2i 10256 | . . 3 ⊢ (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
23 | 11, 20, 22 | 3eqtri 2787 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
24 | 7, 23 | eqtr3i 2785 | 1 ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 1c1 10150 · cmul 10154 -cneg 10480 ∗ccj 14056 ℋchil 28107 ·ℎ csm 28109 ·ih csp 28110 −ℎ cmv 28113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-hfvadd 28188 ax-hvcom 28189 ax-hfvmul 28193 ax-hvmulid 28194 ax-hvmulass 28195 ax-hvdistr1 28196 ax-hfi 28267 ax-his1 28270 ax-his3 28272 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-2 11292 df-cj 14059 df-re 14060 df-im 14061 df-hvsub 28159 |
This theorem is referenced by: lnophmlem2 29207 |
Copyright terms: Public domain | W3C validator |