Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  his35 Structured version   Visualization version   GIF version

Theorem his35 28275
 Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
his35 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · 𝐶) ·ih (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)))

Proof of Theorem his35
StepHypRef Expression
1 his5 28273 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷)))
213expb 1114 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷)))
32adantll 752 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷)))
43oveq2d 6830 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 · (𝐶 ·ih (𝐵 · 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷))))
5 simpll 807 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐴 ∈ ℂ)
6 simprl 811 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐶 ∈ ℋ)
7 hvmulcl 28200 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℋ) → (𝐵 · 𝐷) ∈ ℋ)
87ad2ant2l 799 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 · 𝐷) ∈ ℋ)
9 ax-his3 28271 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ (𝐵 · 𝐷) ∈ ℋ) → ((𝐴 · 𝐶) ·ih (𝐵 · 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 · 𝐷))))
105, 6, 8, 9syl3anc 1477 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · 𝐶) ·ih (𝐵 · 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 · 𝐷))))
11 cjcl 14064 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
1211ad2antlr 765 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (∗‘𝐵) ∈ ℂ)
13 hicl 28267 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih 𝐷) ∈ ℂ)
1413adantl 473 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih 𝐷) ∈ ℂ)
155, 12, 14mulassd 10275 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷))))
164, 10, 153eqtr4d 2804 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · 𝐶) ·ih (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ‘cfv 6049  (class class class)co 6814  ℂcc 10146   · cmul 10153  ∗ccj 14055   ℋchil 28106   ·ℎ csm 28108   ·ih csp 28109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-hfvmul 28192  ax-hfi 28266  ax-his1 28269  ax-his3 28271 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-cj 14058  df-re 14059  df-im 14060 This theorem is referenced by:  his35i  28276  pjhthlem1  28580
 Copyright terms: Public domain W3C validator