![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his2sub | Structured version Visualization version GIF version |
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his2sub | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubval 28182 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
2 | 1 | oveq1d 6828 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
3 | 2 | 3adant3 1127 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
4 | neg1cn 11316 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | hvmulcl 28179 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
6 | 4, 5 | mpan 708 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
7 | ax-his2 28249 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) | |
8 | 6, 7 | syl3an2 1168 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) |
9 | ax-his3 28250 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) | |
10 | 4, 9 | mp3an1 1560 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) |
11 | hicl 28246 | . . . . . . 7 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) | |
12 | 11 | mulm1d 10674 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)) |
13 | 10, 12 | eqtrd 2794 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)) |
14 | 13 | oveq2d 6829 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
15 | 14 | 3adant1 1125 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
16 | 8, 15 | eqtrd 2794 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
17 | hicl 28246 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) | |
18 | 17 | 3adant2 1126 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) |
19 | 11 | 3adant1 1125 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) |
20 | 18, 19 | negsubd 10590 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
21 | 3, 16, 20 | 3eqtrd 2798 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 1c1 10129 + caddc 10131 · cmul 10133 − cmin 10458 -cneg 10459 ℋchil 28085 +ℎ cva 28086 ·ℎ csm 28087 ·ih csp 28088 −ℎ cmv 28091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-hfvmul 28171 ax-hfi 28245 ax-his2 28249 ax-his3 28250 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-ltxr 10271 df-sub 10460 df-neg 10461 df-hvsub 28137 |
This theorem is referenced by: his2sub2 28259 hi2eq 28271 pjhthlem1 28559 h1de2i 28721 pjdifnormii 28851 lnopeqi 29176 riesz3i 29230 leop2 29292 hmopidmpji 29320 pjssposi 29340 pjclem4 29367 pj3si 29375 |
Copyright terms: Public domain | W3C validator |