HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his2sub Structured version   Visualization version   GIF version

Theorem his2sub 28258
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his2sub ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))

Proof of Theorem his2sub
StepHypRef Expression
1 hvsubval 28182 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
21oveq1d 6828 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 + (-1 · 𝐵)) ·ih 𝐶))
323adant3 1127 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 + (-1 · 𝐵)) ·ih 𝐶))
4 neg1cn 11316 . . . . 5 -1 ∈ ℂ
5 hvmulcl 28179 . . . . 5 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
64, 5mpan 708 . . . 4 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
7 ax-his2 28249 . . . 4 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)))
86, 7syl3an2 1168 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)))
9 ax-his3 28250 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
104, 9mp3an1 1560 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
11 hicl 28246 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ)
1211mulm1d 10674 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶))
1310, 12eqtrd 2794 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶))
1413oveq2d 6829 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
15143adant1 1125 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
168, 15eqtrd 2794 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
17 hicl 28246 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ)
18173adant2 1126 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ)
19113adant1 1125 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ)
2018, 19negsubd 10590 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))
213, 16, 203eqtrd 2798 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  (class class class)co 6813  cc 10126  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458  -cneg 10459  chil 28085   + cva 28086   · csm 28087   ·ih csp 28088   cmv 28091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-hfvmul 28171  ax-hfi 28245  ax-his2 28249  ax-his3 28250
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-sub 10460  df-neg 10461  df-hvsub 28137
This theorem is referenced by:  his2sub2  28259  hi2eq  28271  pjhthlem1  28559  h1de2i  28721  pjdifnormii  28851  lnopeqi  29176  riesz3i  29230  leop2  29292  hmopidmpji  29320  pjssposi  29340  pjclem4  29367  pj3si  29375
  Copyright terms: Public domain W3C validator