HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilvc Structured version   Visualization version   GIF version

Theorem hilvc 28249
Description: Hilbert space is a complex vector space. Vector addition is +, and scalar product is ·. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilvc ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem hilvc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 28247 . 2 + ∈ AbelOp
2 ax-hfvadd 28087 . . 3 + :( ℋ × ℋ)⟶ ℋ
32fdmi 6165 . 2 dom + = ( ℋ × ℋ)
4 ax-hfvmul 28092 . 2 · :(ℂ × ℋ)⟶ ℋ
5 ax-hvmulid 28093 . 2 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
6 ax-hvdistr1 28095 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 ax-hvdistr2 28096 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 ax-hvmulass 28094 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2724 . 2 ⟨ + , · ⟩ = ⟨ + , ·
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 27665 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2103  cop 4291   × cxp 5216  CVecOLDcvc 27643  chil 28006   + cva 28007   · csm 28008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-hilex 28086  ax-hfvadd 28087  ax-hvcom 28088  ax-hvass 28089  ax-hv0cl 28090  ax-hvaddid 28091  ax-hfvmul 28092  ax-hvmulid 28093  ax-hvmulass 28094  ax-hvdistr1 28095  ax-hvdistr2 28096  ax-hvmul0 28097
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-ltxr 10192  df-sub 10381  df-neg 10382  df-grpo 27577  df-ablo 27629  df-vc 27644  df-hvsub 28058
This theorem is referenced by:  hhnv  28252
  Copyright terms: Public domain W3C validator