![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hiidge0 | Structured version Visualization version GIF version |
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hiidge0 | ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 432 | . . 3 ⊢ (¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) | |
2 | df-ne 2921 | . . . . . 6 ⊢ (𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ) | |
3 | ax-his4 28222 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | 2, 3 | sylan2br 494 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ) → 0 < (𝐴 ·ih 𝐴)) |
5 | 4 | ex 449 | . . . 4 ⊢ (𝐴 ∈ ℋ → (¬ 𝐴 = 0ℎ → 0 < (𝐴 ·ih 𝐴))) |
6 | oveq1 6808 | . . . . . . 7 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
7 | hi01 28233 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
8 | 6, 7 | sylan9eqr 2804 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
9 | 8 | eqcomd 2754 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → 0 = (𝐴 ·ih 𝐴)) |
10 | 9 | ex 449 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → 0 = (𝐴 ·ih 𝐴))) |
11 | 5, 10 | orim12d 919 | . . 3 ⊢ (𝐴 ∈ ℋ → ((¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
12 | 1, 11 | mpi 20 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))) |
13 | 0re 10203 | . . 3 ⊢ 0 ∈ ℝ | |
14 | hiidrcl 28232 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
15 | leloe 10287 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) | |
16 | 13, 14, 15 | sylancr 698 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
17 | 12, 16 | mpbird 247 | 1 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 (class class class)co 6801 ℝcr 10098 0cc0 10099 < clt 10237 ≤ cle 10238 ℋchil 28056 ·ih csp 28059 0ℎc0v 28061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-hv0cl 28140 ax-hvmul0 28147 ax-hfi 28216 ax-his1 28219 ax-his3 28221 ax-his4 28222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-2 11242 df-cj 14009 df-re 14010 df-im 14011 |
This theorem is referenced by: normlem5 28251 normlem6 28252 normlem7 28253 normf 28260 normge0 28263 normgt0 28264 normsqi 28269 norm-ii-i 28274 norm-iii-i 28276 bcsiALT 28316 pjhthlem1 28530 cnlnadjlem7 29212 branmfn 29244 leopsq 29268 idleop 29270 |
Copyright terms: Public domain | W3C validator |